Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy

Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2  μ m. The n -type free carrier concentration was varied to ∼7 × 10 15  cm −3 , 8.4 × 10 16  cm −3 , and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2017-09, Vol.46 (9), p.5361-5366
Hauptverfasser: Sohal, S., Edirisooriya, M., Ogedengbe, O. S., Petersen, J. E., Swartz, C. H., LeBlanc, E. G., Myers, T. H., Li, J. V., Holtz, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5366
container_issue 9
container_start_page 5361
container_title Journal of electronic materials
container_volume 46
creator Sohal, S.
Edirisooriya, M.
Ogedengbe, O. S.
Petersen, J. E.
Swartz, C. H.
LeBlanc, E. G.
Myers, T. H.
Li, J. V.
Holtz, M.
description Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2  μ m. The n -type free carrier concentration was varied to ∼7 × 10 15  cm −3 , 8.4 × 10 16  cm −3 , and 8.4 × 10 17  cm −3 using iodine as dopant in DHs. Optical injection at 1 × 10 10  photons/pulse/cm 2 to 3 × 10 11  photons/pulse/cm 2 , corresponding to initial injection of photocarriers up to ∼8 × 10 15  cm −3 , was applied to examine the effects of excess carrier concentration on the PL lifetimes. Iodine-doped DHs exhibited an initial rapid decay followed by a slower decay at free carrier concentration of 7 × 10 15  cm −3 and 8.4 × 10 16  cm −3 . The optical injection dependence of the carrier lifetimes for DHs was interpreted based on the Shockley–Read–Hall model. The observed decrease in lifetime with increasing n is consistent with growing importance of radiative recombination.
doi_str_mv 10.1007/s11664-017-5646-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1580431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924200676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-365c58f13960403d4cac2ec754cb00c9262922e9bbcf679b94fe74b7c852a2783</originalsourceid><addsrcrecordid>eNp1kE1P3DAURa0KpA7QH9CdRdcGP38lWdJAAWkQCwapOytxXqZBM_HUdlTy7zFKF2xYvc05V_ddQr4DvwDOi8sIYIxiHAqmjTJs_kJWoJVkUJrfR2TFpQGmhdRfyUmML5yDhhJWZFs3IQwY6HroMQ17jNT39N53w4js2h-wo3X3sN3gZd094QbptZ_aHdI7TBh8TGFyaQrZug3-30jbmT74Hbpp1wT6E5s9vTkMqXmdz8hx3-wifvt_T8nzr5tNfcfWj7f39dWaOVmaxKTRTpc9yMpwxWWnXOMEukIr13LuKmFEJQRWbet6U1RtpXosVFu4UotGFKU8JedLbu422OiGhO6P8-OILlnQJVcSMvRjgQ7B_50wJvvipzDmXhYqoQTnpjCZgoVy-dEYsLeHMOybMFvg9n10u4xu8-j2fXQ7Z0csTszsuMXwIflT6Q0U0oQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924200676</pqid></control><display><type>article</type><title>Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy</title><source>SpringerNature Journals</source><creator>Sohal, S. ; Edirisooriya, M. ; Ogedengbe, O. S. ; Petersen, J. E. ; Swartz, C. H. ; LeBlanc, E. G. ; Myers, T. H. ; Li, J. V. ; Holtz, M.</creator><creatorcontrib>Sohal, S. ; Edirisooriya, M. ; Ogedengbe, O. S. ; Petersen, J. E. ; Swartz, C. H. ; LeBlanc, E. G. ; Myers, T. H. ; Li, J. V. ; Holtz, M. ; Texas State Univ., San Marcos, TX (United States)</creatorcontrib><description>Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2  μ m. The n -type free carrier concentration was varied to ∼7 × 10 15  cm −3 , 8.4 × 10 16  cm −3 , and 8.4 × 10 17  cm −3 using iodine as dopant in DHs. Optical injection at 1 × 10 10  photons/pulse/cm 2 to 3 × 10 11  photons/pulse/cm 2 , corresponding to initial injection of photocarriers up to ∼8 × 10 15  cm −3 , was applied to examine the effects of excess carrier concentration on the PL lifetimes. Iodine-doped DHs exhibited an initial rapid decay followed by a slower decay at free carrier concentration of 7 × 10 15  cm −3 and 8.4 × 10 16  cm −3 . The optical injection dependence of the carrier lifetimes for DHs was interpreted based on the Shockley–Read–Hall model. The observed decrease in lifetime with increasing n is consistent with growing importance of radiative recombination.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-017-5646-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carrier density ; CdTe ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Decay rate ; Electronics ; Electronics and Microelectronics ; Epitaxial growth ; Heterostructures ; Instrumentation ; Iodine ; lifetime ; Materials Science ; Molecular beam epitaxy ; Optical and Electronic Materials ; Photoluminescence ; Photons ; Radiative recombination ; SOLAR ENERGY ; Solid State Physics ; Thickness</subject><ispartof>Journal of electronic materials, 2017-09, Vol.46 (9), p.5361-5366</ispartof><rights>The Minerals, Metals &amp; Materials Society 2017</rights><rights>Journal of Electronic Materials is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-365c58f13960403d4cac2ec754cb00c9262922e9bbcf679b94fe74b7c852a2783</citedby><cites>FETCH-LOGICAL-c386t-365c58f13960403d4cac2ec754cb00c9262922e9bbcf679b94fe74b7c852a2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-017-5646-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-017-5646-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1580431$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohal, S.</creatorcontrib><creatorcontrib>Edirisooriya, M.</creatorcontrib><creatorcontrib>Ogedengbe, O. S.</creatorcontrib><creatorcontrib>Petersen, J. E.</creatorcontrib><creatorcontrib>Swartz, C. H.</creatorcontrib><creatorcontrib>LeBlanc, E. G.</creatorcontrib><creatorcontrib>Myers, T. H.</creatorcontrib><creatorcontrib>Li, J. V.</creatorcontrib><creatorcontrib>Holtz, M.</creatorcontrib><creatorcontrib>Texas State Univ., San Marcos, TX (United States)</creatorcontrib><title>Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2  μ m. The n -type free carrier concentration was varied to ∼7 × 10 15  cm −3 , 8.4 × 10 16  cm −3 , and 8.4 × 10 17  cm −3 using iodine as dopant in DHs. Optical injection at 1 × 10 10  photons/pulse/cm 2 to 3 × 10 11  photons/pulse/cm 2 , corresponding to initial injection of photocarriers up to ∼8 × 10 15  cm −3 , was applied to examine the effects of excess carrier concentration on the PL lifetimes. Iodine-doped DHs exhibited an initial rapid decay followed by a slower decay at free carrier concentration of 7 × 10 15  cm −3 and 8.4 × 10 16  cm −3 . The optical injection dependence of the carrier lifetimes for DHs was interpreted based on the Shockley–Read–Hall model. The observed decrease in lifetime with increasing n is consistent with growing importance of radiative recombination.</description><subject>Carrier density</subject><subject>CdTe</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Decay rate</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Epitaxial growth</subject><subject>Heterostructures</subject><subject>Instrumentation</subject><subject>Iodine</subject><subject>lifetime</subject><subject>Materials Science</subject><subject>Molecular beam epitaxy</subject><subject>Optical and Electronic Materials</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Radiative recombination</subject><subject>SOLAR ENERGY</subject><subject>Solid State Physics</subject><subject>Thickness</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1P3DAURa0KpA7QH9CdRdcGP38lWdJAAWkQCwapOytxXqZBM_HUdlTy7zFKF2xYvc05V_ddQr4DvwDOi8sIYIxiHAqmjTJs_kJWoJVkUJrfR2TFpQGmhdRfyUmML5yDhhJWZFs3IQwY6HroMQ17jNT39N53w4js2h-wo3X3sN3gZd094QbptZ_aHdI7TBh8TGFyaQrZug3-30jbmT74Hbpp1wT6E5s9vTkMqXmdz8hx3-wifvt_T8nzr5tNfcfWj7f39dWaOVmaxKTRTpc9yMpwxWWnXOMEukIr13LuKmFEJQRWbet6U1RtpXosVFu4UotGFKU8JedLbu422OiGhO6P8-OILlnQJVcSMvRjgQ7B_50wJvvipzDmXhYqoQTnpjCZgoVy-dEYsLeHMOybMFvg9n10u4xu8-j2fXQ7Z0csTszsuMXwIflT6Q0U0oQ4</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Sohal, S.</creator><creator>Edirisooriya, M.</creator><creator>Ogedengbe, O. S.</creator><creator>Petersen, J. E.</creator><creator>Swartz, C. H.</creator><creator>LeBlanc, E. G.</creator><creator>Myers, T. H.</creator><creator>Li, J. V.</creator><creator>Holtz, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170901</creationdate><title>Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy</title><author>Sohal, S. ; Edirisooriya, M. ; Ogedengbe, O. S. ; Petersen, J. E. ; Swartz, C. H. ; LeBlanc, E. G. ; Myers, T. H. ; Li, J. V. ; Holtz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-365c58f13960403d4cac2ec754cb00c9262922e9bbcf679b94fe74b7c852a2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carrier density</topic><topic>CdTe</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Decay rate</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Epitaxial growth</topic><topic>Heterostructures</topic><topic>Instrumentation</topic><topic>Iodine</topic><topic>lifetime</topic><topic>Materials Science</topic><topic>Molecular beam epitaxy</topic><topic>Optical and Electronic Materials</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Radiative recombination</topic><topic>SOLAR ENERGY</topic><topic>Solid State Physics</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohal, S.</creatorcontrib><creatorcontrib>Edirisooriya, M.</creatorcontrib><creatorcontrib>Ogedengbe, O. S.</creatorcontrib><creatorcontrib>Petersen, J. E.</creatorcontrib><creatorcontrib>Swartz, C. H.</creatorcontrib><creatorcontrib>LeBlanc, E. G.</creatorcontrib><creatorcontrib>Myers, T. H.</creatorcontrib><creatorcontrib>Li, J. V.</creatorcontrib><creatorcontrib>Holtz, M.</creatorcontrib><creatorcontrib>Texas State Univ., San Marcos, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohal, S.</au><au>Edirisooriya, M.</au><au>Ogedengbe, O. S.</au><au>Petersen, J. E.</au><au>Swartz, C. H.</au><au>LeBlanc, E. G.</au><au>Myers, T. H.</au><au>Li, J. V.</au><au>Holtz, M.</au><aucorp>Texas State Univ., San Marcos, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>46</volume><issue>9</issue><spage>5361</spage><epage>5366</epage><pages>5361-5366</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2  μ m. The n -type free carrier concentration was varied to ∼7 × 10 15  cm −3 , 8.4 × 10 16  cm −3 , and 8.4 × 10 17  cm −3 using iodine as dopant in DHs. Optical injection at 1 × 10 10  photons/pulse/cm 2 to 3 × 10 11  photons/pulse/cm 2 , corresponding to initial injection of photocarriers up to ∼8 × 10 15  cm −3 , was applied to examine the effects of excess carrier concentration on the PL lifetimes. Iodine-doped DHs exhibited an initial rapid decay followed by a slower decay at free carrier concentration of 7 × 10 15  cm −3 and 8.4 × 10 16  cm −3 . The optical injection dependence of the carrier lifetimes for DHs was interpreted based on the Shockley–Read–Hall model. The observed decrease in lifetime with increasing n is consistent with growing importance of radiative recombination.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-017-5646-y</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2017-09, Vol.46 (9), p.5361-5366
issn 0361-5235
1543-186X
language eng
recordid cdi_osti_scitechconnect_1580431
source SpringerNature Journals
subjects Carrier density
CdTe
Characterization and Evaluation of Materials
Chemistry and Materials Science
Decay rate
Electronics
Electronics and Microelectronics
Epitaxial growth
Heterostructures
Instrumentation
Iodine
lifetime
Materials Science
Molecular beam epitaxy
Optical and Electronic Materials
Photoluminescence
Photons
Radiative recombination
SOLAR ENERGY
Solid State Physics
Thickness
title Carrier Lifetimes of Iodine-Doped CdMgTe/CdSeTe Double Heterostructures Grown by Molecular Beam Epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T14%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20Lifetimes%20of%20Iodine-Doped%20CdMgTe/CdSeTe%20Double%20Heterostructures%20Grown%20by%20Molecular%20Beam%20Epitaxy&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Sohal,%20S.&rft.aucorp=Texas%20State%20Univ.,%20San%20Marcos,%20TX%20(United%20States)&rft.date=2017-09-01&rft.volume=46&rft.issue=9&rft.spage=5361&rft.epage=5366&rft.pages=5361-5366&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-017-5646-y&rft_dat=%3Cproquest_osti_%3E1924200676%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924200676&rft_id=info:pmid/&rfr_iscdi=true