In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy

The existing Pu–Zr binary phase diagrams report the stability of the compound θ-(Pu,Zr) in the low temperature region between 300 and 0 °C. Furthermore, the current understanding is that θ-(Pu–Zr) is thermodynamically favored over the metastable δ-(Pu,Zr) phase. In an effort to shed light on the pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-01, Vol.528 (C), p.151875, Article 151875
Hauptverfasser: Aitkaliyeva, Assel, Adkins, Cynthia A., McKinney, Casey, Hirschhorn, Jacob, Tonks, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 151875
container_title Journal of nuclear materials
container_volume 528
creator Aitkaliyeva, Assel
Adkins, Cynthia A.
McKinney, Casey
Hirschhorn, Jacob
Tonks, Michael R.
description The existing Pu–Zr binary phase diagrams report the stability of the compound θ-(Pu,Zr) in the low temperature region between 300 and 0 °C. Furthermore, the current understanding is that θ-(Pu–Zr) is thermodynamically favored over the metastable δ-(Pu,Zr) phase. In an effort to shed light on the phases formed in Pu–Zr binary alloys and reduce uncertainties in the poorly defined boundary between the θ-(Pu,Zr), (θ+δ), δ-(Pu,Zr), and (θ+α-Zr) regions, Pu − 30Zr (in wt.%, equivalent 53 at.%) alloys were subjected to microstructural characterization, annealing, and differential scanning calorimetry (DSC). The results indicate that the alloy is composed of δ-(Pu,Zr) matrix, with a number of smaller, randomly distributed α-Zr precipitates. The phase transition temperatures (determined based on the DSC data) and phases identified in Pu − 30Zr alloys (based on crystallographic data) compare well to those predicted by the phase diagrams with the exception of the θ-(Pu–Zr) phase. Our data indicates that θ-(Pu–Zr) is metastable and can be observed only within a small temperature window (100–300 °C). The consecutive heating cycles remove θ-(Pu–Zr) from the system, and no traces of θ-(Pu–Zr) remain at room temperature, as evidenced by microstructural characterization. This calls for reevaluation of the binary Pu–Zr phase diagram, with particular attention paid to the existence of θ-(Pu–Zr) and its stability.
doi_str_mv 10.1016/j.jnucmat.2019.151875
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1580287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311519309316</els_id><sourcerecordid>2334206699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-ae593c0adecdfb95057113ab214c52784baf5e6d9a2fd405d216d3de8e3380343</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpoJNJH6Eg2k0C8fRKsjx2NqGE_MFAZ5FuZiM00jUj47ETyS7MLsuskwfJNk-Rh8iTVI6z70YXxDmHcz5CvjGYMWDZz2pWNb3Z6m7GgRUzJlk-l5_IJB6RpDmHz2QCwHkiGJNfyH4IFQDIAuSEbK4bGlB7s6FtSV9fksNlf7zyR9Q1dO0a7Xd02b_dP638Cb3ZoN_qmurG0q0zvg2d703X-_c_Xe8ChiFlMDy_PTzGV8DKU13X7e6A7JW6Dvj1407Jn4vzm7OrZPH78vrs1yIxKWNdolEWwoC2aGy5LiTIOWNCrzlLjeTzPF3rUmJmC81Lm4K0nGVWWMxRiBxEKqbk-5gb2zkVjOvQbEzbNGg6xWQOPFKZkh-j6Na3dz2GTlVt7-OEoLgQKYcsK4qokqNqmBo8lurWu21Eohiogbyq1Ad5NZBXI_noOx19GHf-deiHGtgYtM4PLWzr_pPwD-WlkkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334206699</pqid></control><display><type>article</type><title>In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Aitkaliyeva, Assel ; Adkins, Cynthia A. ; McKinney, Casey ; Hirschhorn, Jacob ; Tonks, Michael R.</creator><creatorcontrib>Aitkaliyeva, Assel ; Adkins, Cynthia A. ; McKinney, Casey ; Hirschhorn, Jacob ; Tonks, Michael R.</creatorcontrib><description>The existing Pu–Zr binary phase diagrams report the stability of the compound θ-(Pu,Zr) in the low temperature region between 300 and 0 °C. Furthermore, the current understanding is that θ-(Pu–Zr) is thermodynamically favored over the metastable δ-(Pu,Zr) phase. In an effort to shed light on the phases formed in Pu–Zr binary alloys and reduce uncertainties in the poorly defined boundary between the θ-(Pu,Zr), (θ+δ), δ-(Pu,Zr), and (θ+α-Zr) regions, Pu − 30Zr (in wt.%, equivalent 53 at.%) alloys were subjected to microstructural characterization, annealing, and differential scanning calorimetry (DSC). The results indicate that the alloy is composed of δ-(Pu,Zr) matrix, with a number of smaller, randomly distributed α-Zr precipitates. The phase transition temperatures (determined based on the DSC data) and phases identified in Pu − 30Zr alloys (based on crystallographic data) compare well to those predicted by the phase diagrams with the exception of the θ-(Pu–Zr) phase. Our data indicates that θ-(Pu–Zr) is metastable and can be observed only within a small temperature window (100–300 °C). The consecutive heating cycles remove θ-(Pu–Zr) from the system, and no traces of θ-(Pu–Zr) remain at room temperature, as evidenced by microstructural characterization. This calls for reevaluation of the binary Pu–Zr phase diagram, with particular attention paid to the existence of θ-(Pu–Zr) and its stability.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.151875</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Binary alloys ; Binary systems ; Calorimetry ; Crystallography ; Differential scanning calorimetry ; Low temperature ; Metallic fuel ; Microstructure ; Phase diagrams ; Phase identification ; Phase transition temperatures ; Phase transitions ; Plutonium-zirconium ; Precipitates ; Room temperature ; Stability ; Temperature ; Transition temperatures</subject><ispartof>Journal of nuclear materials, 2020-01, Vol.528 (C), p.151875, Article 151875</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-ae593c0adecdfb95057113ab214c52784baf5e6d9a2fd405d216d3de8e3380343</citedby><cites>FETCH-LOGICAL-c411t-ae593c0adecdfb95057113ab214c52784baf5e6d9a2fd405d216d3de8e3380343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.151875$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1580287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aitkaliyeva, Assel</creatorcontrib><creatorcontrib>Adkins, Cynthia A.</creatorcontrib><creatorcontrib>McKinney, Casey</creatorcontrib><creatorcontrib>Hirschhorn, Jacob</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><title>In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy</title><title>Journal of nuclear materials</title><description>The existing Pu–Zr binary phase diagrams report the stability of the compound θ-(Pu,Zr) in the low temperature region between 300 and 0 °C. Furthermore, the current understanding is that θ-(Pu–Zr) is thermodynamically favored over the metastable δ-(Pu,Zr) phase. In an effort to shed light on the phases formed in Pu–Zr binary alloys and reduce uncertainties in the poorly defined boundary between the θ-(Pu,Zr), (θ+δ), δ-(Pu,Zr), and (θ+α-Zr) regions, Pu − 30Zr (in wt.%, equivalent 53 at.%) alloys were subjected to microstructural characterization, annealing, and differential scanning calorimetry (DSC). The results indicate that the alloy is composed of δ-(Pu,Zr) matrix, with a number of smaller, randomly distributed α-Zr precipitates. The phase transition temperatures (determined based on the DSC data) and phases identified in Pu − 30Zr alloys (based on crystallographic data) compare well to those predicted by the phase diagrams with the exception of the θ-(Pu–Zr) phase. Our data indicates that θ-(Pu–Zr) is metastable and can be observed only within a small temperature window (100–300 °C). The consecutive heating cycles remove θ-(Pu–Zr) from the system, and no traces of θ-(Pu–Zr) remain at room temperature, as evidenced by microstructural characterization. This calls for reevaluation of the binary Pu–Zr phase diagram, with particular attention paid to the existence of θ-(Pu–Zr) and its stability.</description><subject>Alloys</subject><subject>Binary alloys</subject><subject>Binary systems</subject><subject>Calorimetry</subject><subject>Crystallography</subject><subject>Differential scanning calorimetry</subject><subject>Low temperature</subject><subject>Metallic fuel</subject><subject>Microstructure</subject><subject>Phase diagrams</subject><subject>Phase identification</subject><subject>Phase transition temperatures</subject><subject>Phase transitions</subject><subject>Plutonium-zirconium</subject><subject>Precipitates</subject><subject>Room temperature</subject><subject>Stability</subject><subject>Temperature</subject><subject>Transition temperatures</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAUhUVpoJNJH6Eg2k0C8fRKsjx2NqGE_MFAZ5FuZiM00jUj47ETyS7MLsuskwfJNk-Rh8iTVI6z70YXxDmHcz5CvjGYMWDZz2pWNb3Z6m7GgRUzJlk-l5_IJB6RpDmHz2QCwHkiGJNfyH4IFQDIAuSEbK4bGlB7s6FtSV9fksNlf7zyR9Q1dO0a7Xd02b_dP638Cb3ZoN_qmurG0q0zvg2d703X-_c_Xe8ChiFlMDy_PTzGV8DKU13X7e6A7JW6Dvj1407Jn4vzm7OrZPH78vrs1yIxKWNdolEWwoC2aGy5LiTIOWNCrzlLjeTzPF3rUmJmC81Lm4K0nGVWWMxRiBxEKqbk-5gb2zkVjOvQbEzbNGg6xWQOPFKZkh-j6Na3dz2GTlVt7-OEoLgQKYcsK4qokqNqmBo8lurWu21Eohiogbyq1Ad5NZBXI_noOx19GHf-deiHGtgYtM4PLWzr_pPwD-WlkkA</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Aitkaliyeva, Assel</creator><creator>Adkins, Cynthia A.</creator><creator>McKinney, Casey</creator><creator>Hirschhorn, Jacob</creator><creator>Tonks, Michael R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>202001</creationdate><title>In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy</title><author>Aitkaliyeva, Assel ; Adkins, Cynthia A. ; McKinney, Casey ; Hirschhorn, Jacob ; Tonks, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-ae593c0adecdfb95057113ab214c52784baf5e6d9a2fd405d216d3de8e3380343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Binary alloys</topic><topic>Binary systems</topic><topic>Calorimetry</topic><topic>Crystallography</topic><topic>Differential scanning calorimetry</topic><topic>Low temperature</topic><topic>Metallic fuel</topic><topic>Microstructure</topic><topic>Phase diagrams</topic><topic>Phase identification</topic><topic>Phase transition temperatures</topic><topic>Phase transitions</topic><topic>Plutonium-zirconium</topic><topic>Precipitates</topic><topic>Room temperature</topic><topic>Stability</topic><topic>Temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aitkaliyeva, Assel</creatorcontrib><creatorcontrib>Adkins, Cynthia A.</creatorcontrib><creatorcontrib>McKinney, Casey</creatorcontrib><creatorcontrib>Hirschhorn, Jacob</creatorcontrib><creatorcontrib>Tonks, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aitkaliyeva, Assel</au><au>Adkins, Cynthia A.</au><au>McKinney, Casey</au><au>Hirschhorn, Jacob</au><au>Tonks, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-01</date><risdate>2020</risdate><volume>528</volume><issue>C</issue><spage>151875</spage><pages>151875-</pages><artnum>151875</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The existing Pu–Zr binary phase diagrams report the stability of the compound θ-(Pu,Zr) in the low temperature region between 300 and 0 °C. Furthermore, the current understanding is that θ-(Pu–Zr) is thermodynamically favored over the metastable δ-(Pu,Zr) phase. In an effort to shed light on the phases formed in Pu–Zr binary alloys and reduce uncertainties in the poorly defined boundary between the θ-(Pu,Zr), (θ+δ), δ-(Pu,Zr), and (θ+α-Zr) regions, Pu − 30Zr (in wt.%, equivalent 53 at.%) alloys were subjected to microstructural characterization, annealing, and differential scanning calorimetry (DSC). The results indicate that the alloy is composed of δ-(Pu,Zr) matrix, with a number of smaller, randomly distributed α-Zr precipitates. The phase transition temperatures (determined based on the DSC data) and phases identified in Pu − 30Zr alloys (based on crystallographic data) compare well to those predicted by the phase diagrams with the exception of the θ-(Pu–Zr) phase. Our data indicates that θ-(Pu–Zr) is metastable and can be observed only within a small temperature window (100–300 °C). The consecutive heating cycles remove θ-(Pu–Zr) from the system, and no traces of θ-(Pu–Zr) remain at room temperature, as evidenced by microstructural characterization. This calls for reevaluation of the binary Pu–Zr phase diagram, with particular attention paid to the existence of θ-(Pu–Zr) and its stability.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.151875</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-01, Vol.528 (C), p.151875, Article 151875
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1580287
source ScienceDirect Journals (5 years ago - present)
subjects Alloys
Binary alloys
Binary systems
Calorimetry
Crystallography
Differential scanning calorimetry
Low temperature
Metallic fuel
Microstructure
Phase diagrams
Phase identification
Phase transition temperatures
Phase transitions
Plutonium-zirconium
Precipitates
Room temperature
Stability
Temperature
Transition temperatures
title In search of θ-(Pu,Zr) in binary Pu–Zr: Thermal and microstructural analyses of Pu − 30Zr alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20search%20of%20%CE%B8-(Pu,Zr)%20in%20binary%20Pu%E2%80%93Zr:%20Thermal%20and%20microstructural%20analyses%20of%20Pu%E2%80%AF%E2%88%92%E2%80%AF30Zr%20alloy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Aitkaliyeva,%20Assel&rft.date=2020-01&rft.volume=528&rft.issue=C&rft.spage=151875&rft.pages=151875-&rft.artnum=151875&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.151875&rft_dat=%3Cproquest_osti_%3E2334206699%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334206699&rft_id=info:pmid/&rft_els_id=S0022311519309316&rfr_iscdi=true