Multi-distribution ensemble probabilistic wind power forecasting
Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competit...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2020-04, Vol.148 (C), p.135-149 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | C |
container_start_page | 135 |
container_title | Renewable energy |
container_volume | 148 |
creator | Sun, Mucun Feng, Cong Zhang, Jie |
description | Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models.
•Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models. |
doi_str_mv | 10.1016/j.renene.2019.11.145 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1577934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148119318397</els_id><sourcerecordid>S0960148119318397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw_Fe2umTZPmIsriP1jxoueQpBPNstssSVfx25tSzzKHgZn3fsM8Qi6BVkCBX2-qiEOuqqYgK4AKWHtEFtAJWVLe1cdkQSWnJbAOTslZShtKoe0EW5Dbl8N29GXv0xi9OYw-DAUOCXdmi8U-BqON3-alt8W3H_piH74xFi5EtDpPh49zcuL0NuHFX1-S94f7t9VTuX59fF7drUvbCDmWoq5bpD3jwoBzrXaaMt4ZSbUFtLUUtLXI0UioG-hZY7TjxnW056IxYOtmSa5mbshnVbJ-RPtpwzCgHRW0QsiGZRGbRTaGlCI6tY9-p-OPAqqmqNRGzVGpKSoFoHJU2XYz2zA_8OUxTnwcLPY-Tvg--P8Bv6FldSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-distribution ensemble probabilistic wind power forecasting</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Mucun ; Feng, Cong ; Zhang, Jie</creator><creatorcontrib>Sun, Mucun ; Feng, Cong ; Zhang, Jie</creatorcontrib><description>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models.
•Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2019.11.145</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Ensemble forecasting ; Optimization ; Pinball loss ; Probabilistic wind power forecasting ; Surrogate model</subject><ispartof>Renewable energy, 2020-04, Vol.148 (C), p.135-149</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</citedby><cites>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</cites><orcidid>0000-0003-2866-0716 ; 0000000328660716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2019.11.145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1577934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Multi-distribution ensemble probabilistic wind power forecasting</title><title>Renewable energy</title><description>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models.
•Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</description><subject>Ensemble forecasting</subject><subject>Optimization</subject><subject>Pinball loss</subject><subject>Probabilistic wind power forecasting</subject><subject>Surrogate model</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw_Fe2umTZPmIsriP1jxoueQpBPNstssSVfx25tSzzKHgZn3fsM8Qi6BVkCBX2-qiEOuqqYgK4AKWHtEFtAJWVLe1cdkQSWnJbAOTslZShtKoe0EW5Dbl8N29GXv0xi9OYw-DAUOCXdmi8U-BqON3-alt8W3H_piH74xFi5EtDpPh49zcuL0NuHFX1-S94f7t9VTuX59fF7drUvbCDmWoq5bpD3jwoBzrXaaMt4ZSbUFtLUUtLXI0UioG-hZY7TjxnW056IxYOtmSa5mbshnVbJ-RPtpwzCgHRW0QsiGZRGbRTaGlCI6tY9-p-OPAqqmqNRGzVGpKSoFoHJU2XYz2zA_8OUxTnwcLPY-Tvg--P8Bv6FldSM</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Sun, Mucun</creator><creator>Feng, Cong</creator><creator>Zhang, Jie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid></search><sort><creationdate>202004</creationdate><title>Multi-distribution ensemble probabilistic wind power forecasting</title><author>Sun, Mucun ; Feng, Cong ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ensemble forecasting</topic><topic>Optimization</topic><topic>Pinball loss</topic><topic>Probabilistic wind power forecasting</topic><topic>Surrogate model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mucun</au><au>Feng, Cong</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-distribution ensemble probabilistic wind power forecasting</atitle><jtitle>Renewable energy</jtitle><date>2020-04</date><risdate>2020</risdate><volume>148</volume><issue>C</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models.
•Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2019.11.145</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2020-04, Vol.148 (C), p.135-149 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_osti_scitechconnect_1577934 |
source | Elsevier ScienceDirect Journals |
subjects | Ensemble forecasting Optimization Pinball loss Probabilistic wind power forecasting Surrogate model |
title | Multi-distribution ensemble probabilistic wind power forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-distribution%20ensemble%20probabilistic%20wind%20power%20forecasting&rft.jtitle=Renewable%20energy&rft.au=Sun,%20Mucun&rft.date=2020-04&rft.volume=148&rft.issue=C&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2019.11.145&rft_dat=%3Celsevier_osti_%3ES0960148119318397%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148119318397&rfr_iscdi=true |