Multi-distribution ensemble probabilistic wind power forecasting

Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2020-04, Vol.148 (C), p.135-149
Hauptverfasser: Sun, Mucun, Feng, Cong, Zhang, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue C
container_start_page 135
container_title Renewable energy
container_volume 148
creator Sun, Mucun
Feng, Cong
Zhang, Jie
description Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models. •Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.
doi_str_mv 10.1016/j.renene.2019.11.145
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1577934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148119318397</els_id><sourcerecordid>S0960148119318397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw_Fe2umTZPmIsriP1jxoueQpBPNstssSVfx25tSzzKHgZn3fsM8Qi6BVkCBX2-qiEOuqqYgK4AKWHtEFtAJWVLe1cdkQSWnJbAOTslZShtKoe0EW5Dbl8N29GXv0xi9OYw-DAUOCXdmi8U-BqON3-alt8W3H_piH74xFi5EtDpPh49zcuL0NuHFX1-S94f7t9VTuX59fF7drUvbCDmWoq5bpD3jwoBzrXaaMt4ZSbUFtLUUtLXI0UioG-hZY7TjxnW056IxYOtmSa5mbshnVbJ-RPtpwzCgHRW0QsiGZRGbRTaGlCI6tY9-p-OPAqqmqNRGzVGpKSoFoHJU2XYz2zA_8OUxTnwcLPY-Tvg--P8Bv6FldSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-distribution ensemble probabilistic wind power forecasting</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Mucun ; Feng, Cong ; Zhang, Jie</creator><creatorcontrib>Sun, Mucun ; Feng, Cong ; Zhang, Jie</creatorcontrib><description>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models. •Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2019.11.145</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Ensemble forecasting ; Optimization ; Pinball loss ; Probabilistic wind power forecasting ; Surrogate model</subject><ispartof>Renewable energy, 2020-04, Vol.148 (C), p.135-149</ispartof><rights>2019 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</citedby><cites>FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</cites><orcidid>0000-0003-2866-0716 ; 0000000328660716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2019.11.145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1577934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><title>Multi-distribution ensemble probabilistic wind power forecasting</title><title>Renewable energy</title><description>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models. •Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</description><subject>Ensemble forecasting</subject><subject>Optimization</subject><subject>Pinball loss</subject><subject>Probabilistic wind power forecasting</subject><subject>Surrogate model</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw_Fe2umTZPmIsriP1jxoueQpBPNstssSVfx25tSzzKHgZn3fsM8Qi6BVkCBX2-qiEOuqqYgK4AKWHtEFtAJWVLe1cdkQSWnJbAOTslZShtKoe0EW5Dbl8N29GXv0xi9OYw-DAUOCXdmi8U-BqON3-alt8W3H_piH74xFi5EtDpPh49zcuL0NuHFX1-S94f7t9VTuX59fF7drUvbCDmWoq5bpD3jwoBzrXaaMt4ZSbUFtLUUtLXI0UioG-hZY7TjxnW056IxYOtmSa5mbshnVbJ-RPtpwzCgHRW0QsiGZRGbRTaGlCI6tY9-p-OPAqqmqNRGzVGpKSoFoHJU2XYz2zA_8OUxTnwcLPY-Tvg--P8Bv6FldSM</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Sun, Mucun</creator><creator>Feng, Cong</creator><creator>Zhang, Jie</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid></search><sort><creationdate>202004</creationdate><title>Multi-distribution ensemble probabilistic wind power forecasting</title><author>Sun, Mucun ; Feng, Cong ; Zhang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-7225e0d467b1ff5afa0468b90ac1ec29705ce6eb91231d43baf6bf80d673b1c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ensemble forecasting</topic><topic>Optimization</topic><topic>Pinball loss</topic><topic>Probabilistic wind power forecasting</topic><topic>Surrogate model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mucun</creatorcontrib><creatorcontrib>Feng, Cong</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mucun</au><au>Feng, Cong</au><au>Zhang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-distribution ensemble probabilistic wind power forecasting</atitle><jtitle>Renewable energy</jtitle><date>2020-04</date><risdate>2020</risdate><volume>148</volume><issue>C</issue><spage>135</spage><epage>149</epage><pages>135-149</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Ensemble methods have shown to be able to improve the performance of deterministic wind forecasting. In this paper, an improved multi-distribution ensemble (MDE) probabilistic wind power forecasting framework is developed to explore the advantages of different predictive distributions. Both competitive and cooperative strategies are applied to the developed MDE framework to generate 1–6 h ahead and day-ahead probabilistic wind power forecasts. Three probabilistic forecasting models based on Gaussian, gamma, and laplace predictive distributions are adopted to form the ensemble model. The parameters of the ensemble model (i.e., weights and standard deviations) are optimized by minimizing the pinball loss at the training stage. A set of surrogate models are built to quantify the relationship between the unknown optimal parameters and deterministic forecasts, which can be used for online forecasting. The effectiveness of the proposed MDE framework is validated by using the Wind Integration National Dataset (WIND) Toolkit. Numerical results of case studies at seven locations show that the developed MDE probabilistic forecasting methodology has improved the pinball loss metric score by up to 20.5% compared to the individual-distribution models and benchmark ensemble models. •Develop an ensemble probabilistic wind power forecasting framework.•Explore both competitive and cooperative ensemble strategies.•Explore probabilistic forecasting accuracies at different forecasting horizons.•Reduce pinball loss by up to 20.5% compared to benchmark models.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2019.11.145</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2866-0716</orcidid><orcidid>https://orcid.org/0000000328660716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2020-04, Vol.148 (C), p.135-149
issn 0960-1481
1879-0682
language eng
recordid cdi_osti_scitechconnect_1577934
source Elsevier ScienceDirect Journals
subjects Ensemble forecasting
Optimization
Pinball loss
Probabilistic wind power forecasting
Surrogate model
title Multi-distribution ensemble probabilistic wind power forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-distribution%20ensemble%20probabilistic%20wind%20power%20forecasting&rft.jtitle=Renewable%20energy&rft.au=Sun,%20Mucun&rft.date=2020-04&rft.volume=148&rft.issue=C&rft.spage=135&rft.epage=149&rft.pages=135-149&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2019.11.145&rft_dat=%3Celsevier_osti_%3ES0960148119318397%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148119318397&rfr_iscdi=true