Stabilization of furanics to cyclic ketone building blocks in the vapor phase

[Display omitted] •Furfural conversion to cyclopentanone can be accomplished in the vapor phase.•Water molecules directly participate in this reaction.•This reaction can occur with real biomass torrefaction vapors.•Active sites for this reaction on TiO2 catalyst lie at the metal-support interface. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-10, Vol.254 (C), p.491-499
Hauptverfasser: Omotoso, Taiwo, Herrera, Leidy V., Vann, Tyler, Briggs, Nicholas M., Gomez, Laura A., Barrett, Lawrence, Jones, Donald, Pham, Tram, Wang, Bin, Crossley, Steven P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 499
container_issue C
container_start_page 491
container_title Applied catalysis. B, Environmental
container_volume 254
creator Omotoso, Taiwo
Herrera, Leidy V.
Vann, Tyler
Briggs, Nicholas M.
Gomez, Laura A.
Barrett, Lawrence
Jones, Donald
Pham, Tram
Wang, Bin
Crossley, Steven P.
description [Display omitted] •Furfural conversion to cyclopentanone can be accomplished in the vapor phase.•Water molecules directly participate in this reaction.•This reaction can occur with real biomass torrefaction vapors.•Active sites for this reaction on TiO2 catalyst lie at the metal-support interface. Furanics are produced in high abundance from the decomposition of biomass. The thermal and chemical instability of these species leads to the formation of humins upon condensation. The ring rearrangement of furfural to form 2-cyclopentenone and cyclopentanone is known to occur in the condensed aqueous phase, but this requires operation in condensed acidic media where humin formation readily occurs. High hydrogen pressures are typically used to offset rapid polymerization reactions, limiting the yields of stable unsaturated products that result. Here we report that furfural can be selectively converted to 2-cyclopentenone and cyclopentanone in a single step over supported TiO2 catalysts with both model compounds and real biomass-derived streams in the vapor phase. Selectivity for ring rearrangement vs. CO cleavage over TiO2 supported Ru and Pd catalysts can be tuned by manipulating the water partial pressure. The formation of these products in the absence of a condensed acidic stream also enables the tuning of reaction environments to favor the selective formation of unsaturated ketones, which could be valuable diolefin precursors. The incorporation of a TiO2 support in the catalysts tested leads to the suppression of CC hydrogenolysis/decarbonylation and enhancement of ring rearrangement reactions. The nature of the active sites for selective CO cleavage as well as vapor phase ring rearrangement are discussed.
doi_str_mv 10.1016/j.apcatb.2019.04.079
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1577720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319304011</els_id><sourcerecordid>2250581211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-6480bee1083fe91b30c946e32551d286bc7123eb30124fe665af31982a8ba3763</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw9Bz635apteBFn8ghUP6jmk6dTNbk1qkl1Yf71d6tnTwPC8wzsPQpeU5JTQ8mad68Ho1OSM0DonIidVfYRmVFY841LyYzQjNSszzit-is5iXBNCGGdyhl7ekm5sb390st5h3-FuG7SzJuLksdmb3hq8geQd4GZr-9a6T9z03mwitg6nFeCdHnzAw0pHOEcnne4jXPzNOfp4uH9fPGXL18fnxd0yM0KIlJVCkgaAEsk7qGnDialFCZwVBW2ZLBtTUcZh3FMmOijLQnec1pJp2WhelXyOrqa7PiarorEJzMp458AkRYuqqhgZoesJGoL_3kJMau23wY29FGMFKSRllI6UmCgTfIwBOjUE-6XDXlGiDnbVWk121cGuIkKNdsfY7RSD8c2dhXBoAc5Aa8OhROvt_wd-AQOHg1Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250581211</pqid></control><display><type>article</type><title>Stabilization of furanics to cyclic ketone building blocks in the vapor phase</title><source>Elsevier ScienceDirect Journals</source><creator>Omotoso, Taiwo ; Herrera, Leidy V. ; Vann, Tyler ; Briggs, Nicholas M. ; Gomez, Laura A. ; Barrett, Lawrence ; Jones, Donald ; Pham, Tram ; Wang, Bin ; Crossley, Steven P.</creator><creatorcontrib>Omotoso, Taiwo ; Herrera, Leidy V. ; Vann, Tyler ; Briggs, Nicholas M. ; Gomez, Laura A. ; Barrett, Lawrence ; Jones, Donald ; Pham, Tram ; Wang, Bin ; Crossley, Steven P. ; Univ. of Oklahoma, Norman, OK (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>[Display omitted] •Furfural conversion to cyclopentanone can be accomplished in the vapor phase.•Water molecules directly participate in this reaction.•This reaction can occur with real biomass torrefaction vapors.•Active sites for this reaction on TiO2 catalyst lie at the metal-support interface. Furanics are produced in high abundance from the decomposition of biomass. The thermal and chemical instability of these species leads to the formation of humins upon condensation. The ring rearrangement of furfural to form 2-cyclopentenone and cyclopentanone is known to occur in the condensed aqueous phase, but this requires operation in condensed acidic media where humin formation readily occurs. High hydrogen pressures are typically used to offset rapid polymerization reactions, limiting the yields of stable unsaturated products that result. Here we report that furfural can be selectively converted to 2-cyclopentenone and cyclopentanone in a single step over supported TiO2 catalysts with both model compounds and real biomass-derived streams in the vapor phase. Selectivity for ring rearrangement vs. CO cleavage over TiO2 supported Ru and Pd catalysts can be tuned by manipulating the water partial pressure. The formation of these products in the absence of a condensed acidic stream also enables the tuning of reaction environments to favor the selective formation of unsaturated ketones, which could be valuable diolefin precursors. The incorporation of a TiO2 support in the catalysts tested leads to the suppression of CC hydrogenolysis/decarbonylation and enhancement of ring rearrangement reactions. The nature of the active sites for selective CO cleavage as well as vapor phase ring rearrangement are discussed.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.04.079</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Biomass ; Catalysis ; Catalysts ; Cleavage ; Condensates ; Cyclopentanone ; Digital media ; ENGINEERING ; Furfural ; Hydrogenolysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ketones ; Organic chemistry ; Partial pressure ; Polymerization ; Selectivity ; Spillover ; Stability ; Streams ; Titanium dioxide ; Torrefaction ; Vapor phases ; Vapors</subject><ispartof>Applied catalysis. B, Environmental, 2019-10, Vol.254 (C), p.491-499</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Oct 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-6480bee1083fe91b30c946e32551d286bc7123eb30124fe665af31982a8ba3763</citedby><cites>FETCH-LOGICAL-c444t-6480bee1083fe91b30c946e32551d286bc7123eb30124fe665af31982a8ba3763</cites><orcidid>0000-0002-1017-9839 ; 0000000210179839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337319304011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1577720$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Omotoso, Taiwo</creatorcontrib><creatorcontrib>Herrera, Leidy V.</creatorcontrib><creatorcontrib>Vann, Tyler</creatorcontrib><creatorcontrib>Briggs, Nicholas M.</creatorcontrib><creatorcontrib>Gomez, Laura A.</creatorcontrib><creatorcontrib>Barrett, Lawrence</creatorcontrib><creatorcontrib>Jones, Donald</creatorcontrib><creatorcontrib>Pham, Tram</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Crossley, Steven P.</creatorcontrib><creatorcontrib>Univ. of Oklahoma, Norman, OK (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Stabilization of furanics to cyclic ketone building blocks in the vapor phase</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Furfural conversion to cyclopentanone can be accomplished in the vapor phase.•Water molecules directly participate in this reaction.•This reaction can occur with real biomass torrefaction vapors.•Active sites for this reaction on TiO2 catalyst lie at the metal-support interface. Furanics are produced in high abundance from the decomposition of biomass. The thermal and chemical instability of these species leads to the formation of humins upon condensation. The ring rearrangement of furfural to form 2-cyclopentenone and cyclopentanone is known to occur in the condensed aqueous phase, but this requires operation in condensed acidic media where humin formation readily occurs. High hydrogen pressures are typically used to offset rapid polymerization reactions, limiting the yields of stable unsaturated products that result. Here we report that furfural can be selectively converted to 2-cyclopentenone and cyclopentanone in a single step over supported TiO2 catalysts with both model compounds and real biomass-derived streams in the vapor phase. Selectivity for ring rearrangement vs. CO cleavage over TiO2 supported Ru and Pd catalysts can be tuned by manipulating the water partial pressure. The formation of these products in the absence of a condensed acidic stream also enables the tuning of reaction environments to favor the selective formation of unsaturated ketones, which could be valuable diolefin precursors. The incorporation of a TiO2 support in the catalysts tested leads to the suppression of CC hydrogenolysis/decarbonylation and enhancement of ring rearrangement reactions. The nature of the active sites for selective CO cleavage as well as vapor phase ring rearrangement are discussed.</description><subject>Biomass</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cleavage</subject><subject>Condensates</subject><subject>Cyclopentanone</subject><subject>Digital media</subject><subject>ENGINEERING</subject><subject>Furfural</subject><subject>Hydrogenolysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ketones</subject><subject>Organic chemistry</subject><subject>Partial pressure</subject><subject>Polymerization</subject><subject>Selectivity</subject><subject>Spillover</subject><subject>Stability</subject><subject>Streams</subject><subject>Titanium dioxide</subject><subject>Torrefaction</subject><subject>Vapor phases</subject><subject>Vapors</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw9Bz635apteBFn8ghUP6jmk6dTNbk1qkl1Yf71d6tnTwPC8wzsPQpeU5JTQ8mad68Ho1OSM0DonIidVfYRmVFY841LyYzQjNSszzit-is5iXBNCGGdyhl7ekm5sb390st5h3-FuG7SzJuLksdmb3hq8geQd4GZr-9a6T9z03mwitg6nFeCdHnzAw0pHOEcnne4jXPzNOfp4uH9fPGXL18fnxd0yM0KIlJVCkgaAEsk7qGnDialFCZwVBW2ZLBtTUcZh3FMmOijLQnec1pJp2WhelXyOrqa7PiarorEJzMp458AkRYuqqhgZoesJGoL_3kJMau23wY29FGMFKSRllI6UmCgTfIwBOjUE-6XDXlGiDnbVWk121cGuIkKNdsfY7RSD8c2dhXBoAc5Aa8OhROvt_wd-AQOHg1Y</recordid><startdate>20191005</startdate><enddate>20191005</enddate><creator>Omotoso, Taiwo</creator><creator>Herrera, Leidy V.</creator><creator>Vann, Tyler</creator><creator>Briggs, Nicholas M.</creator><creator>Gomez, Laura A.</creator><creator>Barrett, Lawrence</creator><creator>Jones, Donald</creator><creator>Pham, Tram</creator><creator>Wang, Bin</creator><creator>Crossley, Steven P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1017-9839</orcidid><orcidid>https://orcid.org/0000000210179839</orcidid></search><sort><creationdate>20191005</creationdate><title>Stabilization of furanics to cyclic ketone building blocks in the vapor phase</title><author>Omotoso, Taiwo ; Herrera, Leidy V. ; Vann, Tyler ; Briggs, Nicholas M. ; Gomez, Laura A. ; Barrett, Lawrence ; Jones, Donald ; Pham, Tram ; Wang, Bin ; Crossley, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-6480bee1083fe91b30c946e32551d286bc7123eb30124fe665af31982a8ba3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomass</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cleavage</topic><topic>Condensates</topic><topic>Cyclopentanone</topic><topic>Digital media</topic><topic>ENGINEERING</topic><topic>Furfural</topic><topic>Hydrogenolysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ketones</topic><topic>Organic chemistry</topic><topic>Partial pressure</topic><topic>Polymerization</topic><topic>Selectivity</topic><topic>Spillover</topic><topic>Stability</topic><topic>Streams</topic><topic>Titanium dioxide</topic><topic>Torrefaction</topic><topic>Vapor phases</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omotoso, Taiwo</creatorcontrib><creatorcontrib>Herrera, Leidy V.</creatorcontrib><creatorcontrib>Vann, Tyler</creatorcontrib><creatorcontrib>Briggs, Nicholas M.</creatorcontrib><creatorcontrib>Gomez, Laura A.</creatorcontrib><creatorcontrib>Barrett, Lawrence</creatorcontrib><creatorcontrib>Jones, Donald</creatorcontrib><creatorcontrib>Pham, Tram</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Crossley, Steven P.</creatorcontrib><creatorcontrib>Univ. of Oklahoma, Norman, OK (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omotoso, Taiwo</au><au>Herrera, Leidy V.</au><au>Vann, Tyler</au><au>Briggs, Nicholas M.</au><au>Gomez, Laura A.</au><au>Barrett, Lawrence</au><au>Jones, Donald</au><au>Pham, Tram</au><au>Wang, Bin</au><au>Crossley, Steven P.</au><aucorp>Univ. of Oklahoma, Norman, OK (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of furanics to cyclic ketone building blocks in the vapor phase</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-10-05</date><risdate>2019</risdate><volume>254</volume><issue>C</issue><spage>491</spage><epage>499</epage><pages>491-499</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Furfural conversion to cyclopentanone can be accomplished in the vapor phase.•Water molecules directly participate in this reaction.•This reaction can occur with real biomass torrefaction vapors.•Active sites for this reaction on TiO2 catalyst lie at the metal-support interface. Furanics are produced in high abundance from the decomposition of biomass. The thermal and chemical instability of these species leads to the formation of humins upon condensation. The ring rearrangement of furfural to form 2-cyclopentenone and cyclopentanone is known to occur in the condensed aqueous phase, but this requires operation in condensed acidic media where humin formation readily occurs. High hydrogen pressures are typically used to offset rapid polymerization reactions, limiting the yields of stable unsaturated products that result. Here we report that furfural can be selectively converted to 2-cyclopentenone and cyclopentanone in a single step over supported TiO2 catalysts with both model compounds and real biomass-derived streams in the vapor phase. Selectivity for ring rearrangement vs. CO cleavage over TiO2 supported Ru and Pd catalysts can be tuned by manipulating the water partial pressure. The formation of these products in the absence of a condensed acidic stream also enables the tuning of reaction environments to favor the selective formation of unsaturated ketones, which could be valuable diolefin precursors. The incorporation of a TiO2 support in the catalysts tested leads to the suppression of CC hydrogenolysis/decarbonylation and enhancement of ring rearrangement reactions. The nature of the active sites for selective CO cleavage as well as vapor phase ring rearrangement are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.04.079</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1017-9839</orcidid><orcidid>https://orcid.org/0000000210179839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-10, Vol.254 (C), p.491-499
issn 0926-3373
1873-3883
language eng
recordid cdi_osti_scitechconnect_1577720
source Elsevier ScienceDirect Journals
subjects Biomass
Catalysis
Catalysts
Cleavage
Condensates
Cyclopentanone
Digital media
ENGINEERING
Furfural
Hydrogenolysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ketones
Organic chemistry
Partial pressure
Polymerization
Selectivity
Spillover
Stability
Streams
Titanium dioxide
Torrefaction
Vapor phases
Vapors
title Stabilization of furanics to cyclic ketone building blocks in the vapor phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20furanics%20to%20cyclic%20ketone%20building%20blocks%20in%20the%20vapor%20phase&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Omotoso,%20Taiwo&rft.aucorp=Univ.%20of%20Oklahoma,%20Norman,%20OK%20(United%20States)&rft.date=2019-10-05&rft.volume=254&rft.issue=C&rft.spage=491&rft.epage=499&rft.pages=491-499&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.04.079&rft_dat=%3Cproquest_osti_%3E2250581211%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250581211&rft_id=info:pmid/&rft_els_id=S0926337319304011&rfr_iscdi=true