Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3

Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-06, Vol.123 (22), p.4776-4784
Hauptverfasser: Wang, Chun-Hung, Panteleev, Sergey V, Masunov, Artëm E, Allison, Timothy C, Chang, Sungho, Lim, Chansun, Jin, Yuin, Vasu, Subith S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4784
container_issue 22
container_start_page 4776
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 123
creator Wang, Chun-Hung
Panteleev, Sergey V
Masunov, Artëm E
Allison, Timothy C
Chang, Sungho
Lim, Chansun
Jin, Yuin
Vasu, Subith S
description Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp­(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp­(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.
doi_str_mv 10.1021/acs.jpca.9b02302
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1577496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2217484433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-2d8e9af4e8deec509ff79fc57c33cc546644abf0285c6c69603b5f9871414fc53</originalsourceid><addsrcrecordid>eNpdkc1KxDAQx4soqKt3j8GToF3z2TbepH6soCh-nEM6TTFLt1mbFNwn8OKr-FI-ianrycvMMPnN_Mn8k-SA4CnBlJxq8NP5EvRUVpgyTDeSHSIoTgUlYjPWuJCpyJjcTna9n2OMCaN8J_m6c62BodU9ulh1emHBI9eg0i2qwQfrOvRoNIyFR7ZDT8PS9NDbYEG3qNR9FYkL695tbaboQfcBibNxejkEPU5F6ikM9WpcehledWci7r0D-_uMdFdHBYhyttP_9Eo6y9D3xycqZwwdj3Ev2Wp0683-X54kL1eXz-Usvb2_vinPb1NNKQ8prQsjdcNNURsDAsumyWUDIgfGAATPMs511WBaCMggkxlmlWhkkRNOeOTYJDlc73XxBsqDDQZewXWdgaCIyHMuswgdraFl794G44NaWA-mbeMn3eAVpSTnBeeMRfRkjUaX1NwNfbyLVwSr0Tr124zWqT_r2A9tUI92</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217484433</pqid></control><display><type>article</type><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><source>ACS Publications</source><creator>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S</creator><creatorcontrib>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp­(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp­(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b02302</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chemical reactions ; Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetic parameters ; molecules ; Physics ; redox reactions ; solvents</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2019-06, Vol.123 (22), p.4776-4784</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4164-3163 ; 0000-0001-8780-5642 ; 0000-0003-4924-3380 ; 0000000187805642 ; 0000000349243380 ; 0000000241643163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.9b02302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.9b02302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1577496$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Hung</creatorcontrib><creatorcontrib>Panteleev, Sergey V</creatorcontrib><creatorcontrib>Masunov, Artëm E</creatorcontrib><creatorcontrib>Allison, Timothy C</creatorcontrib><creatorcontrib>Chang, Sungho</creatorcontrib><creatorcontrib>Lim, Chansun</creatorcontrib><creatorcontrib>Jin, Yuin</creatorcontrib><creatorcontrib>Vasu, Subith S</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp­(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp­(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</description><subject>chemical reactions</subject><subject>Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetic parameters</subject><subject>molecules</subject><subject>Physics</subject><subject>redox reactions</subject><subject>solvents</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1KxDAQx4soqKt3j8GToF3z2TbepH6soCh-nEM6TTFLt1mbFNwn8OKr-FI-ianrycvMMPnN_Mn8k-SA4CnBlJxq8NP5EvRUVpgyTDeSHSIoTgUlYjPWuJCpyJjcTna9n2OMCaN8J_m6c62BodU9ulh1emHBI9eg0i2qwQfrOvRoNIyFR7ZDT8PS9NDbYEG3qNR9FYkL695tbaboQfcBibNxejkEPU5F6ikM9WpcehledWci7r0D-_uMdFdHBYhyttP_9Eo6y9D3xycqZwwdj3Ev2Wp0683-X54kL1eXz-Usvb2_vinPb1NNKQ8prQsjdcNNURsDAsumyWUDIgfGAATPMs511WBaCMggkxlmlWhkkRNOeOTYJDlc73XxBsqDDQZewXWdgaCIyHMuswgdraFl794G44NaWA-mbeMn3eAVpSTnBeeMRfRkjUaX1NwNfbyLVwSr0Tr124zWqT_r2A9tUI92</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Wang, Chun-Hung</creator><creator>Panteleev, Sergey V</creator><creator>Masunov, Artëm E</creator><creator>Allison, Timothy C</creator><creator>Chang, Sungho</creator><creator>Lim, Chansun</creator><creator>Jin, Yuin</creator><creator>Vasu, Subith S</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4164-3163</orcidid><orcidid>https://orcid.org/0000-0001-8780-5642</orcidid><orcidid>https://orcid.org/0000-0003-4924-3380</orcidid><orcidid>https://orcid.org/0000000187805642</orcidid><orcidid>https://orcid.org/0000000349243380</orcidid><orcidid>https://orcid.org/0000000241643163</orcidid></search><sort><creationdate>20190606</creationdate><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><author>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-2d8e9af4e8deec509ff79fc57c33cc546644abf0285c6c69603b5f9871414fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chemical reactions</topic><topic>Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetic parameters</topic><topic>molecules</topic><topic>Physics</topic><topic>redox reactions</topic><topic>solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Hung</creatorcontrib><creatorcontrib>Panteleev, Sergey V</creatorcontrib><creatorcontrib>Masunov, Artëm E</creatorcontrib><creatorcontrib>Allison, Timothy C</creatorcontrib><creatorcontrib>Chang, Sungho</creatorcontrib><creatorcontrib>Lim, Chansun</creatorcontrib><creatorcontrib>Jin, Yuin</creatorcontrib><creatorcontrib>Vasu, Subith S</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Hung</au><au>Panteleev, Sergey V</au><au>Masunov, Artëm E</au><au>Allison, Timothy C</au><au>Chang, Sungho</au><au>Lim, Chansun</au><au>Jin, Yuin</au><au>Vasu, Subith S</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>123</volume><issue>22</issue><spage>4776</spage><epage>4784</epage><pages>4776-4784</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp­(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp­(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.9b02302</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4164-3163</orcidid><orcidid>https://orcid.org/0000-0001-8780-5642</orcidid><orcidid>https://orcid.org/0000-0003-4924-3380</orcidid><orcidid>https://orcid.org/0000000187805642</orcidid><orcidid>https://orcid.org/0000000349243380</orcidid><orcidid>https://orcid.org/0000000241643163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-06, Vol.123 (22), p.4776-4784
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1577496
source ACS Publications
subjects chemical reactions
Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
kinetic parameters
molecules
Physics
redox reactions
solvents
title Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20Combustion%20Reactions%20in%20Supercritical%20Carbon%20Dioxide.%20Part%205:%20Computational%20Study%20of%20Ethane%20Dissociation%20and%20Recombination%20Reactions%20C2H6%20%E2%87%8C%20CH3%20+%20CH3&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wang,%20Chun-Hung&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-06&rft.volume=123&rft.issue=22&rft.spage=4776&rft.epage=4784&rft.pages=4776-4784&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b02302&rft_dat=%3Cproquest_osti_%3E2217484433%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217484433&rft_id=info:pmid/&rfr_iscdi=true