Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3
Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environmen...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2019-06, Vol.123 (22), p.4776-4784 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4784 |
---|---|
container_issue | 22 |
container_start_page | 4776 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 123 |
creator | Wang, Chun-Hung Panteleev, Sergey V Masunov, Artëm E Allison, Timothy C Chang, Sungho Lim, Chansun Jin, Yuin Vasu, Subith S |
description | Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination. |
doi_str_mv | 10.1021/acs.jpca.9b02302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1577496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2217484433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-2d8e9af4e8deec509ff79fc57c33cc546644abf0285c6c69603b5f9871414fc53</originalsourceid><addsrcrecordid>eNpdkc1KxDAQx4soqKt3j8GToF3z2TbepH6soCh-nEM6TTFLt1mbFNwn8OKr-FI-ianrycvMMPnN_Mn8k-SA4CnBlJxq8NP5EvRUVpgyTDeSHSIoTgUlYjPWuJCpyJjcTna9n2OMCaN8J_m6c62BodU9ulh1emHBI9eg0i2qwQfrOvRoNIyFR7ZDT8PS9NDbYEG3qNR9FYkL695tbaboQfcBibNxejkEPU5F6ikM9WpcehledWci7r0D-_uMdFdHBYhyttP_9Eo6y9D3xycqZwwdj3Ev2Wp0683-X54kL1eXz-Usvb2_vinPb1NNKQ8prQsjdcNNURsDAsumyWUDIgfGAATPMs511WBaCMggkxlmlWhkkRNOeOTYJDlc73XxBsqDDQZewXWdgaCIyHMuswgdraFl794G44NaWA-mbeMn3eAVpSTnBeeMRfRkjUaX1NwNfbyLVwSr0Tr124zWqT_r2A9tUI92</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217484433</pqid></control><display><type>article</type><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><source>ACS Publications</source><creator>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S</creator><creatorcontrib>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.9b02302</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chemical reactions ; Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetic parameters ; molecules ; Physics ; redox reactions ; solvents</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-06, Vol.123 (22), p.4776-4784</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4164-3163 ; 0000-0001-8780-5642 ; 0000-0003-4924-3380 ; 0000000187805642 ; 0000000349243380 ; 0000000241643163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.9b02302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.9b02302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1577496$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Hung</creatorcontrib><creatorcontrib>Panteleev, Sergey V</creatorcontrib><creatorcontrib>Masunov, Artëm E</creatorcontrib><creatorcontrib>Allison, Timothy C</creatorcontrib><creatorcontrib>Chang, Sungho</creatorcontrib><creatorcontrib>Lim, Chansun</creatorcontrib><creatorcontrib>Jin, Yuin</creatorcontrib><creatorcontrib>Vasu, Subith S</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</description><subject>chemical reactions</subject><subject>Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetic parameters</subject><subject>molecules</subject><subject>Physics</subject><subject>redox reactions</subject><subject>solvents</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1KxDAQx4soqKt3j8GToF3z2TbepH6soCh-nEM6TTFLt1mbFNwn8OKr-FI-ianrycvMMPnN_Mn8k-SA4CnBlJxq8NP5EvRUVpgyTDeSHSIoTgUlYjPWuJCpyJjcTna9n2OMCaN8J_m6c62BodU9ulh1emHBI9eg0i2qwQfrOvRoNIyFR7ZDT8PS9NDbYEG3qNR9FYkL695tbaboQfcBibNxejkEPU5F6ikM9WpcehledWci7r0D-_uMdFdHBYhyttP_9Eo6y9D3xycqZwwdj3Ev2Wp0683-X54kL1eXz-Usvb2_vinPb1NNKQ8prQsjdcNNURsDAsumyWUDIgfGAATPMs511WBaCMggkxlmlWhkkRNOeOTYJDlc73XxBsqDDQZewXWdgaCIyHMuswgdraFl794G44NaWA-mbeMn3eAVpSTnBeeMRfRkjUaX1NwNfbyLVwSr0Tr124zWqT_r2A9tUI92</recordid><startdate>20190606</startdate><enddate>20190606</enddate><creator>Wang, Chun-Hung</creator><creator>Panteleev, Sergey V</creator><creator>Masunov, Artëm E</creator><creator>Allison, Timothy C</creator><creator>Chang, Sungho</creator><creator>Lim, Chansun</creator><creator>Jin, Yuin</creator><creator>Vasu, Subith S</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4164-3163</orcidid><orcidid>https://orcid.org/0000-0001-8780-5642</orcidid><orcidid>https://orcid.org/0000-0003-4924-3380</orcidid><orcidid>https://orcid.org/0000000187805642</orcidid><orcidid>https://orcid.org/0000000349243380</orcidid><orcidid>https://orcid.org/0000000241643163</orcidid></search><sort><creationdate>20190606</creationdate><title>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</title><author>Wang, Chun-Hung ; Panteleev, Sergey V ; Masunov, Artëm E ; Allison, Timothy C ; Chang, Sungho ; Lim, Chansun ; Jin, Yuin ; Vasu, Subith S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-2d8e9af4e8deec509ff79fc57c33cc546644abf0285c6c69603b5f9871414fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chemical reactions</topic><topic>Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetic parameters</topic><topic>molecules</topic><topic>Physics</topic><topic>redox reactions</topic><topic>solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Hung</creatorcontrib><creatorcontrib>Panteleev, Sergey V</creatorcontrib><creatorcontrib>Masunov, Artëm E</creatorcontrib><creatorcontrib>Allison, Timothy C</creatorcontrib><creatorcontrib>Chang, Sungho</creatorcontrib><creatorcontrib>Lim, Chansun</creatorcontrib><creatorcontrib>Jin, Yuin</creatorcontrib><creatorcontrib>Vasu, Subith S</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Hung</au><au>Panteleev, Sergey V</au><au>Masunov, Artëm E</au><au>Allison, Timothy C</au><au>Chang, Sungho</au><au>Lim, Chansun</au><au>Jin, Yuin</au><au>Vasu, Subith S</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2019-06-06</date><risdate>2019</risdate><volume>123</volume><issue>22</issue><spage>4776</spage><epage>4784</epage><pages>4776-4784</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Fossil fuel oxy-combustion is an emerging technology where the habitual nitrogen diluent is replaced by high-pressure supercritical CO2 (sCO2), which increases the efficiency of energy conversion. In this study, the chemical kinetics of the combustion reaction C2H6 ⇌ CH3 + CH3 in the sCO2 environment is predicted at 30–1000 atm and 1000–2000 K. We adopt a multiscale approach, where the reactive complex is treated quantum mechanically in rigid rotor/harmonic oscillator approximation, while environment effects at different densities are taken into account by the potential of mean force, produced with classical molecular dynamics (MD). Here, we used boxed MD, where enhanced sampling of infrequent events of barrier crossing is accomplished without application of the bias potential. The multistate empirical valence bond model is applied to describe free radical formation accurately at the cost of the classical force field. Predicted rates at low densities agree well with the literature data. Rate constants at 300 atm are 2.41 × 1014 T –0.20 exp(−77.03 kcal/mol/RT) 1/s for ethane dissociation and 8.44 × 10–19 T 1.42 exp(19.89 kcal/mol/RT) cm3/molecule/s for methyl–methyl recombination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.9b02302</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4164-3163</orcidid><orcidid>https://orcid.org/0000-0001-8780-5642</orcidid><orcidid>https://orcid.org/0000-0003-4924-3380</orcidid><orcidid>https://orcid.org/0000000187805642</orcidid><orcidid>https://orcid.org/0000000349243380</orcidid><orcidid>https://orcid.org/0000000241643163</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2019-06, Vol.123 (22), p.4776-4784 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_osti_scitechconnect_1577496 |
source | ACS Publications |
subjects | chemical reactions Chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY kinetic parameters molecules Physics redox reactions solvents |
title | Molecular Dynamics of Combustion Reactions in Supercritical Carbon Dioxide. Part 5: Computational Study of Ethane Dissociation and Recombination Reactions C2H6 ⇌ CH3 + CH3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20Combustion%20Reactions%20in%20Supercritical%20Carbon%20Dioxide.%20Part%205:%20Computational%20Study%20of%20Ethane%20Dissociation%20and%20Recombination%20Reactions%20C2H6%20%E2%87%8C%20CH3%20+%20CH3&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Wang,%20Chun-Hung&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-06&rft.volume=123&rft.issue=22&rft.spage=4776&rft.epage=4784&rft.pages=4776-4784&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.9b02302&rft_dat=%3Cproquest_osti_%3E2217484433%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217484433&rft_id=info:pmid/&rfr_iscdi=true |