PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks

Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2019-12, Vol.20 (12), p.2273-2289
Hauptverfasser: Sadeghi, Mojtaba, Asanjan, Ata Akbari, Faridzad, Mohammad, Nguyen, Phu, Hsu, Kuolin, Sorooshian, Soroosh, Braithwaite, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2289
container_issue 12
container_start_page 2273
container_title Journal of hydrometeorology
container_volume 20
creator Sadeghi, Mojtaba
Asanjan, Ata Akbari
Faridzad, Mohammad
Nguyen, Phu
Hsu, Kuolin
Sorooshian, Soroosh
Braithwaite, Dan
description Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.
doi_str_mv 10.1175/jhm-d-19-0110.1
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1575959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26894450</jstor_id><sourcerecordid>26894450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXlzIkLnE29fm18rEKhRSUgHhI3K3EctRFNip0e-Pc0CuppVqNvRqsh5ArYHQCqab3e0pKCoQx664SMQHFFUUk4Pd7q65xcxFgzxqSBZEQmr_O39-Usy2iaZRNyVuXf0V_-65h8Psw_0gVdvTwu09mKOonQUa2B5ZUrcsF8iUxKXWBRoCiLHLTkyHOnuNbai5Jrl0iBnKPTAiuQRshEjMnN0NvGbmOj23TerV3bNN51FhQqo8wBuh2gXWh_9j52tm73oTn8ZbkwDDlq6KumA-VCG2Pwld2FzTYPvxaY7XexT4tne2_B2H4XC4fE9ZCoY9eGI851YqRUTPwBIGlabQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390727618</pqid></control><display><type>article</type><title>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</creator><creatorcontrib>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</creatorcontrib><description>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/jhm-d-19-0110.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric precipitations ; Cloud classification ; Datasets ; Disasters ; Estimates ; Flood forecasting ; Gauges ; Geostationary satellites ; High resolution ; Hydrology ; Learning algorithms ; Machine learning ; Model accuracy ; Natural disasters ; Neighborhoods ; Neural networks ; Noise reduction ; Precipitation ; Precipitation estimation ; Precipitation rate ; Radar ; Radar data ; Rain ; Rainfall ; Rainfall measurement ; Remote sensing ; Resolution ; Root-mean-square errors ; Satellite data ; Satellites ; Sensors ; Spatial resolution ; Synchronous satellites ; Water vapor ; Water vapour</subject><ispartof>Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2273-2289</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</citedby><cites>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26894450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26894450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1575959$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Faridzad, Mohammad</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Braithwaite, Dan</creatorcontrib><title>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</title><title>Journal of hydrometeorology</title><description>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric precipitations</subject><subject>Cloud classification</subject><subject>Datasets</subject><subject>Disasters</subject><subject>Estimates</subject><subject>Flood forecasting</subject><subject>Gauges</subject><subject>Geostationary satellites</subject><subject>High resolution</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Natural disasters</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation rate</subject><subject>Radar</subject><subject>Radar data</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall measurement</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Synchronous satellites</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtPwzAQhC0EEqXlzIkLnE29fm18rEKhRSUgHhI3K3EctRFNip0e-Pc0CuppVqNvRqsh5ArYHQCqab3e0pKCoQx664SMQHFFUUk4Pd7q65xcxFgzxqSBZEQmr_O39-Usy2iaZRNyVuXf0V_-65h8Psw_0gVdvTwu09mKOonQUa2B5ZUrcsF8iUxKXWBRoCiLHLTkyHOnuNbai5Jrl0iBnKPTAiuQRshEjMnN0NvGbmOj23TerV3bNN51FhQqo8wBuh2gXWh_9j52tm73oTn8ZbkwDDlq6KumA-VCG2Pwld2FzTYPvxaY7XexT4tne2_B2H4XC4fE9ZCoY9eGI851YqRUTPwBIGlabQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Sadeghi, Mojtaba</creator><creator>Asanjan, Ata Akbari</creator><creator>Faridzad, Mohammad</creator><creator>Nguyen, Phu</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><creator>Braithwaite, Dan</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope></search><sort><creationdate>20191201</creationdate><title>PERSIANN-CNN</title><author>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric precipitations</topic><topic>Cloud classification</topic><topic>Datasets</topic><topic>Disasters</topic><topic>Estimates</topic><topic>Flood forecasting</topic><topic>Gauges</topic><topic>Geostationary satellites</topic><topic>High resolution</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Natural disasters</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation rate</topic><topic>Radar</topic><topic>Radar data</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall measurement</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Synchronous satellites</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Faridzad, Mohammad</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Braithwaite, Dan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Mojtaba</au><au>Asanjan, Ata Akbari</au><au>Faridzad, Mohammad</au><au>Nguyen, Phu</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><au>Braithwaite, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>12</issue><spage>2273</spage><epage>2289</epage><pages>2273-2289</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jhm-d-19-0110.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2273-2289
issn 1525-755X
1525-7541
language eng
recordid cdi_osti_scitechconnect_1575959
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Atmospheric precipitations
Cloud classification
Datasets
Disasters
Estimates
Flood forecasting
Gauges
Geostationary satellites
High resolution
Hydrology
Learning algorithms
Machine learning
Model accuracy
Natural disasters
Neighborhoods
Neural networks
Noise reduction
Precipitation
Precipitation estimation
Precipitation rate
Radar
Radar data
Rain
Rainfall
Rainfall measurement
Remote sensing
Resolution
Root-mean-square errors
Satellite data
Satellites
Sensors
Spatial resolution
Synchronous satellites
Water vapor
Water vapour
title PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERSIANN-CNN:%20Precipitation%20Estimation%20from%20Remotely%20Sensed%20Information%20Using%20Artificial%20Neural%20Networks%E2%80%93Convolutional%20Neural%20Networks&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Sadeghi,%20Mojtaba&rft.date=2019-12-01&rft.volume=20&rft.issue=12&rft.spage=2273&rft.epage=2289&rft.pages=2273-2289&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/jhm-d-19-0110.1&rft_dat=%3Cjstor_osti_%3E26894450%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390727618&rft_id=info:pmid/&rft_jstor_id=26894450&rfr_iscdi=true