PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks
Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep lear...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2019-12, Vol.20 (12), p.2273-2289 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2289 |
---|---|
container_issue | 12 |
container_start_page | 2273 |
container_title | Journal of hydrometeorology |
container_volume | 20 |
creator | Sadeghi, Mojtaba Asanjan, Ata Akbari Faridzad, Mohammad Nguyen, Phu Hsu, Kuolin Sorooshian, Soroosh Braithwaite, Dan |
description | Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model. |
doi_str_mv | 10.1175/jhm-d-19-0110.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1575959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26894450</jstor_id><sourcerecordid>26894450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXlzIkLnE29fm18rEKhRSUgHhI3K3EctRFNip0e-Pc0CuppVqNvRqsh5ArYHQCqab3e0pKCoQx664SMQHFFUUk4Pd7q65xcxFgzxqSBZEQmr_O39-Usy2iaZRNyVuXf0V_-65h8Psw_0gVdvTwu09mKOonQUa2B5ZUrcsF8iUxKXWBRoCiLHLTkyHOnuNbai5Jrl0iBnKPTAiuQRshEjMnN0NvGbmOj23TerV3bNN51FhQqo8wBuh2gXWh_9j52tm73oTn8ZbkwDDlq6KumA-VCG2Pwld2FzTYPvxaY7XexT4tne2_B2H4XC4fE9ZCoY9eGI851YqRUTPwBIGlabQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390727618</pqid></control><display><type>article</type><title>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</creator><creatorcontrib>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</creatorcontrib><description>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/jhm-d-19-0110.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Artificial neural networks ; Atmospheric precipitations ; Cloud classification ; Datasets ; Disasters ; Estimates ; Flood forecasting ; Gauges ; Geostationary satellites ; High resolution ; Hydrology ; Learning algorithms ; Machine learning ; Model accuracy ; Natural disasters ; Neighborhoods ; Neural networks ; Noise reduction ; Precipitation ; Precipitation estimation ; Precipitation rate ; Radar ; Radar data ; Rain ; Rainfall ; Rainfall measurement ; Remote sensing ; Resolution ; Root-mean-square errors ; Satellite data ; Satellites ; Sensors ; Spatial resolution ; Synchronous satellites ; Water vapor ; Water vapour</subject><ispartof>Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2273-2289</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</citedby><cites>FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26894450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26894450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1575959$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Faridzad, Mohammad</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Braithwaite, Dan</creatorcontrib><title>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</title><title>Journal of hydrometeorology</title><description>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Atmospheric precipitations</subject><subject>Cloud classification</subject><subject>Datasets</subject><subject>Disasters</subject><subject>Estimates</subject><subject>Flood forecasting</subject><subject>Gauges</subject><subject>Geostationary satellites</subject><subject>High resolution</subject><subject>Hydrology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Natural disasters</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Precipitation rate</subject><subject>Radar</subject><subject>Radar data</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall measurement</subject><subject>Remote sensing</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Synchronous satellites</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtPwzAQhC0EEqXlzIkLnE29fm18rEKhRSUgHhI3K3EctRFNip0e-Pc0CuppVqNvRqsh5ArYHQCqab3e0pKCoQx664SMQHFFUUk4Pd7q65xcxFgzxqSBZEQmr_O39-Usy2iaZRNyVuXf0V_-65h8Psw_0gVdvTwu09mKOonQUa2B5ZUrcsF8iUxKXWBRoCiLHLTkyHOnuNbai5Jrl0iBnKPTAiuQRshEjMnN0NvGbmOj23TerV3bNN51FhQqo8wBuh2gXWh_9j52tm73oTn8ZbkwDDlq6KumA-VCG2Pwld2FzTYPvxaY7XexT4tne2_B2H4XC4fE9ZCoY9eGI851YqRUTPwBIGlabQ</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Sadeghi, Mojtaba</creator><creator>Asanjan, Ata Akbari</creator><creator>Faridzad, Mohammad</creator><creator>Nguyen, Phu</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><creator>Braithwaite, Dan</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope></search><sort><creationdate>20191201</creationdate><title>PERSIANN-CNN</title><author>Sadeghi, Mojtaba ; Asanjan, Ata Akbari ; Faridzad, Mohammad ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh ; Braithwaite, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-6610afcba30ed70446b7bb73dba164272ac52666e3d26c8437227c637f1493483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Atmospheric precipitations</topic><topic>Cloud classification</topic><topic>Datasets</topic><topic>Disasters</topic><topic>Estimates</topic><topic>Flood forecasting</topic><topic>Gauges</topic><topic>Geostationary satellites</topic><topic>High resolution</topic><topic>Hydrology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Natural disasters</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Precipitation rate</topic><topic>Radar</topic><topic>Radar data</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall measurement</topic><topic>Remote sensing</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Synchronous satellites</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Asanjan, Ata Akbari</creatorcontrib><creatorcontrib>Faridzad, Mohammad</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><creatorcontrib>Braithwaite, Dan</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Mojtaba</au><au>Asanjan, Ata Akbari</au><au>Faridzad, Mohammad</au><au>Nguyen, Phu</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><au>Braithwaite, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>12</issue><spage>2273</spage><epage>2289</epage><pages>2273-2289</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-meansquare error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jhm-d-19-0110.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2019-12, Vol.20 (12), p.2273-2289 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_osti_scitechconnect_1575959 |
source | American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Atmospheric precipitations Cloud classification Datasets Disasters Estimates Flood forecasting Gauges Geostationary satellites High resolution Hydrology Learning algorithms Machine learning Model accuracy Natural disasters Neighborhoods Neural networks Noise reduction Precipitation Precipitation estimation Precipitation rate Radar Radar data Rain Rainfall Rainfall measurement Remote sensing Resolution Root-mean-square errors Satellite data Satellites Sensors Spatial resolution Synchronous satellites Water vapor Water vapour |
title | PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PERSIANN-CNN:%20Precipitation%20Estimation%20from%20Remotely%20Sensed%20Information%20Using%20Artificial%20Neural%20Networks%E2%80%93Convolutional%20Neural%20Networks&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Sadeghi,%20Mojtaba&rft.date=2019-12-01&rft.volume=20&rft.issue=12&rft.spage=2273&rft.epage=2289&rft.pages=2273-2289&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/jhm-d-19-0110.1&rft_dat=%3Cjstor_osti_%3E26894450%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390727618&rft_id=info:pmid/&rft_jstor_id=26894450&rfr_iscdi=true |