Unconventional ideas for ionization cooling of muons
Small muon beams increase the luminosity of a muon collider. Reducing the momentum and position spreads of muons reduces emittance and leads to small, cool beams. Ionization cooling has been observed at the Muon Ionization Cooling Experiment. 6D emittance reduction by a factor of 100, 000 has been a...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2020-03, Vol.15 (3), p.P03004-P03004 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | P03004 |
---|---|
container_issue | 3 |
container_start_page | P03004 |
container_title | Journal of instrumentation |
container_volume | 15 |
creator | Hart, T.L. Acosta, J.G. Cremaldi, L.M. Neuffer, D.V. Oliveros, S.J. Stratakis, D. Summers, D.J. Yonehara, K. |
description | Small muon beams increase the luminosity of a muon collider. Reducing the momentum and position spreads of muons reduces emittance and leads to small, cool beams. Ionization cooling has been observed at the Muon Ionization Cooling Experiment. 6D emittance reduction by a factor of 100, 000 has been achieved in simulation. Another factor of 5 in cooling would meet the basic requirements of a high luminosity muon collider. In this paper we compare, for the first time, the amount of RF needed in a cooling channel to previous linacs. We also outline three methods aimed to help achieve a final factor of 5 in 6D cooling. |
doi_str_mv | 10.1088/1748-0221/15/03/P03004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1574846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369952741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a252c1cbf202eed3ee2ca5954f1359e8b1551b811f2a574dfe0d46daa934f5da3</originalsourceid><addsrcrecordid>eNpNkFtLwzAUx4MoOKdfQYo-156TS9c-yvAGA31wzyFLE83Ykpm0gn56Uyri07n9zu1PyCXCDULTVLjgTQmUYoWiAla9AAPgR2T2Vzj-55-Ss5S2AKIVHGaEr70O_tP43gWvdoXrjEqFDbHIsftWY7rQIeycfyuCLfZD8OmcnFi1S-bi187J-v7udflYrp4fnpa3q1IzhL5UVFCNemMpUGM6ZgzVatxrkYnWNBsUAjcNoqVKLHhnDXS87pRqGbeiU2xOrqa5IfVOJu16o9_zud7oXmJuaXidoesJOsTwMZjUy20YYv4lScrqthV0wTFT9UTpGFKKxspDdHsVvySCHGWUo0JyVChPlsDkJCP7AarQZNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369952741</pqid></control><display><type>article</type><title>Unconventional ideas for ionization cooling of muons</title><source>Institute of Physics Journals</source><creator>Hart, T.L. ; Acosta, J.G. ; Cremaldi, L.M. ; Neuffer, D.V. ; Oliveros, S.J. ; Stratakis, D. ; Summers, D.J. ; Yonehara, K.</creator><creatorcontrib>Hart, T.L. ; Acosta, J.G. ; Cremaldi, L.M. ; Neuffer, D.V. ; Oliveros, S.J. ; Stratakis, D. ; Summers, D.J. ; Yonehara, K. ; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><description>Small muon beams increase the luminosity of a muon collider. Reducing the momentum and position spreads of muons reduces emittance and leads to small, cool beams. Ionization cooling has been observed at the Muon Ionization Cooling Experiment. 6D emittance reduction by a factor of 100, 000 has been achieved in simulation. Another factor of 5 in cooling would meet the basic requirements of a high luminosity muon collider. In this paper we compare, for the first time, the amount of RF needed in a cooling channel to previous linacs. We also outline three methods aimed to help achieve a final factor of 5 in 6D cooling.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/03/P03004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>acceleration cavities and superconducting magnets (high-temperature superconductor ; accelerator modelling and simulations (multi-particle dynamics ; Cooling ; Emittance ; Ionization ; Luminosity ; Muons ; normal-conducting ; PARTICLE ACCELERATORS ; Particle beams ; permanent magnet devices ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; radiation hardened magnets ; single-particle dynamics ; wigglers and undulators</subject><ispartof>Journal of instrumentation, 2020-03, Vol.15 (3), p.P03004-P03004</ispartof><rights>Copyright IOP Publishing Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a252c1cbf202eed3ee2ca5954f1359e8b1551b811f2a574dfe0d46daa934f5da3</citedby><cites>FETCH-LOGICAL-c310t-a252c1cbf202eed3ee2ca5954f1359e8b1551b811f2a574dfe0d46daa934f5da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1574846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, T.L.</creatorcontrib><creatorcontrib>Acosta, J.G.</creatorcontrib><creatorcontrib>Cremaldi, L.M.</creatorcontrib><creatorcontrib>Neuffer, D.V.</creatorcontrib><creatorcontrib>Oliveros, S.J.</creatorcontrib><creatorcontrib>Stratakis, D.</creatorcontrib><creatorcontrib>Summers, D.J.</creatorcontrib><creatorcontrib>Yonehara, K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><title>Unconventional ideas for ionization cooling of muons</title><title>Journal of instrumentation</title><description>Small muon beams increase the luminosity of a muon collider. Reducing the momentum and position spreads of muons reduces emittance and leads to small, cool beams. Ionization cooling has been observed at the Muon Ionization Cooling Experiment. 6D emittance reduction by a factor of 100, 000 has been achieved in simulation. Another factor of 5 in cooling would meet the basic requirements of a high luminosity muon collider. In this paper we compare, for the first time, the amount of RF needed in a cooling channel to previous linacs. We also outline three methods aimed to help achieve a final factor of 5 in 6D cooling.</description><subject>acceleration cavities and superconducting magnets (high-temperature superconductor</subject><subject>accelerator modelling and simulations (multi-particle dynamics</subject><subject>Cooling</subject><subject>Emittance</subject><subject>Ionization</subject><subject>Luminosity</subject><subject>Muons</subject><subject>normal-conducting</subject><subject>PARTICLE ACCELERATORS</subject><subject>Particle beams</subject><subject>permanent magnet devices</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>radiation hardened magnets</subject><subject>single-particle dynamics</subject><subject>wigglers and undulators</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkFtLwzAUx4MoOKdfQYo-156TS9c-yvAGA31wzyFLE83Ykpm0gn56Uyri07n9zu1PyCXCDULTVLjgTQmUYoWiAla9AAPgR2T2Vzj-55-Ss5S2AKIVHGaEr70O_tP43gWvdoXrjEqFDbHIsftWY7rQIeycfyuCLfZD8OmcnFi1S-bi187J-v7udflYrp4fnpa3q1IzhL5UVFCNemMpUGM6ZgzVatxrkYnWNBsUAjcNoqVKLHhnDXS87pRqGbeiU2xOrqa5IfVOJu16o9_zud7oXmJuaXidoesJOsTwMZjUy20YYv4lScrqthV0wTFT9UTpGFKKxspDdHsVvySCHGWUo0JyVChPlsDkJCP7AarQZNg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Hart, T.L.</creator><creator>Acosta, J.G.</creator><creator>Cremaldi, L.M.</creator><creator>Neuffer, D.V.</creator><creator>Oliveros, S.J.</creator><creator>Stratakis, D.</creator><creator>Summers, D.J.</creator><creator>Yonehara, K.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200301</creationdate><title>Unconventional ideas for ionization cooling of muons</title><author>Hart, T.L. ; Acosta, J.G. ; Cremaldi, L.M. ; Neuffer, D.V. ; Oliveros, S.J. ; Stratakis, D. ; Summers, D.J. ; Yonehara, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a252c1cbf202eed3ee2ca5954f1359e8b1551b811f2a574dfe0d46daa934f5da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acceleration cavities and superconducting magnets (high-temperature superconductor</topic><topic>accelerator modelling and simulations (multi-particle dynamics</topic><topic>Cooling</topic><topic>Emittance</topic><topic>Ionization</topic><topic>Luminosity</topic><topic>Muons</topic><topic>normal-conducting</topic><topic>PARTICLE ACCELERATORS</topic><topic>Particle beams</topic><topic>permanent magnet devices</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>radiation hardened magnets</topic><topic>single-particle dynamics</topic><topic>wigglers and undulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, T.L.</creatorcontrib><creatorcontrib>Acosta, J.G.</creatorcontrib><creatorcontrib>Cremaldi, L.M.</creatorcontrib><creatorcontrib>Neuffer, D.V.</creatorcontrib><creatorcontrib>Oliveros, S.J.</creatorcontrib><creatorcontrib>Stratakis, D.</creatorcontrib><creatorcontrib>Summers, D.J.</creatorcontrib><creatorcontrib>Yonehara, K.</creatorcontrib><creatorcontrib>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, T.L.</au><au>Acosta, J.G.</au><au>Cremaldi, L.M.</au><au>Neuffer, D.V.</au><au>Oliveros, S.J.</au><au>Stratakis, D.</au><au>Summers, D.J.</au><au>Yonehara, K.</au><aucorp>Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconventional ideas for ionization cooling of muons</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>P03004</spage><epage>P03004</epage><pages>P03004-P03004</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Small muon beams increase the luminosity of a muon collider. Reducing the momentum and position spreads of muons reduces emittance and leads to small, cool beams. Ionization cooling has been observed at the Muon Ionization Cooling Experiment. 6D emittance reduction by a factor of 100, 000 has been achieved in simulation. Another factor of 5 in cooling would meet the basic requirements of a high luminosity muon collider. In this paper we compare, for the first time, the amount of RF needed in a cooling channel to previous linacs. We also outline three methods aimed to help achieve a final factor of 5 in 6D cooling.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/03/P03004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2020-03, Vol.15 (3), p.P03004-P03004 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_osti_scitechconnect_1574846 |
source | Institute of Physics Journals |
subjects | acceleration cavities and superconducting magnets (high-temperature superconductor accelerator modelling and simulations (multi-particle dynamics Cooling Emittance Ionization Luminosity Muons normal-conducting PARTICLE ACCELERATORS Particle beams permanent magnet devices PHYSICS OF ELEMENTARY PARTICLES AND FIELDS radiation hardened magnets single-particle dynamics wigglers and undulators |
title | Unconventional ideas for ionization cooling of muons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconventional%20ideas%20for%20ionization%20cooling%20of%20muons&rft.jtitle=Journal%20of%20instrumentation&rft.au=Hart,%20T.L.&rft.aucorp=Fermi%20National%20Accelerator%20Lab.%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-03-01&rft.volume=15&rft.issue=3&rft.spage=P03004&rft.epage=P03004&rft.pages=P03004-P03004&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/03/P03004&rft_dat=%3Cproquest_osti_%3E2369952741%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369952741&rft_id=info:pmid/&rfr_iscdi=true |