Strain Mapping of CdTe Grains in Photovoltaic Devices
Strain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. Yet, the nanoscale strain distribution in operational devices is not easily accessible using standard methods....
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2019-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | IEEE journal of photovoltaics |
container_volume | |
creator | Calvo-Almazan, Irene Ulvestad, Andrew P. Colegrove, Eric Ablekim, Tursun Holt, Martin V. Hill, Megan O. Maddali, Siddharth Lauhon, Lincoln J. Bertoni, Mariana I. Huang, Xiaojing Yan, Hanfei Nazaretski, Evgeny Chu, Yong S. Hruszkewycz, Stephan O. Stuckelberger, Michael Elias |
description | Strain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. Yet, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Moreover, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This method is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains. |
doi_str_mv | 10.1109/JPHOTOV.2019.2942487 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1571412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1571412</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15714123</originalsourceid><addsrcrecordid>eNqNil0LgjAYhUcUJOU_6GJ0r-3d5te1fUgQCkm3ImvmQpy04e_PoO47N-fhPAehDRAfgCS7c5HlZX7zKYHEpwmnPI5myKEQhB7jhM1_zGJYIteYJ5kSkiAMuYOCq33VqseXehhU_8C6wem9lPj0WQ2eTNFqq0fd2VoJvJejEtKs0aKpOyPdb6_Q9ngo08zTxqrKCGWlaIXueylsBUEEHCj76_QGMaM8gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain Mapping of CdTe Grains in Photovoltaic Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Calvo-Almazan, Irene ; Ulvestad, Andrew P. ; Colegrove, Eric ; Ablekim, Tursun ; Holt, Martin V. ; Hill, Megan O. ; Maddali, Siddharth ; Lauhon, Lincoln J. ; Bertoni, Mariana I. ; Huang, Xiaojing ; Yan, Hanfei ; Nazaretski, Evgeny ; Chu, Yong S. ; Hruszkewycz, Stephan O. ; Stuckelberger, Michael Elias</creator><creatorcontrib>Calvo-Almazan, Irene ; Ulvestad, Andrew P. ; Colegrove, Eric ; Ablekim, Tursun ; Holt, Martin V. ; Hill, Megan O. ; Maddali, Siddharth ; Lauhon, Lincoln J. ; Bertoni, Mariana I. ; Huang, Xiaojing ; Yan, Hanfei ; Nazaretski, Evgeny ; Chu, Yong S. ; Hruszkewycz, Stephan O. ; Stuckelberger, Michael Elias ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Strain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. Yet, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Moreover, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This method is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2942487</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>CdTe ; MATERIALS SCIENCE ; multimodal ; nanodiffraction ; photovoltaic ; solar cells ; strain ; X-ray ; X-ray beam induced current (XBIC) ; X-ray diffraction (XRD) ; X-ray fluorescence (XRF) ; X-ray microscopy</subject><ispartof>IEEE journal of photovoltaics, 2019-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000345166250 ; 000000020415837X ; 0000000282445235 ; 0000000238112193 ; 0000000274427862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1571412$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvo-Almazan, Irene</creatorcontrib><creatorcontrib>Ulvestad, Andrew P.</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Ablekim, Tursun</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Hill, Megan O.</creatorcontrib><creatorcontrib>Maddali, Siddharth</creatorcontrib><creatorcontrib>Lauhon, Lincoln J.</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Hruszkewycz, Stephan O.</creatorcontrib><creatorcontrib>Stuckelberger, Michael Elias</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Strain Mapping of CdTe Grains in Photovoltaic Devices</title><title>IEEE journal of photovoltaics</title><description>Strain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. Yet, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Moreover, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This method is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains.</description><subject>CdTe</subject><subject>MATERIALS SCIENCE</subject><subject>multimodal</subject><subject>nanodiffraction</subject><subject>photovoltaic</subject><subject>solar cells</subject><subject>strain</subject><subject>X-ray</subject><subject>X-ray beam induced current (XBIC)</subject><subject>X-ray diffraction (XRD)</subject><subject>X-ray fluorescence (XRF)</subject><subject>X-ray microscopy</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNil0LgjAYhUcUJOU_6GJ0r-3d5te1fUgQCkm3ImvmQpy04e_PoO47N-fhPAehDRAfgCS7c5HlZX7zKYHEpwmnPI5myKEQhB7jhM1_zGJYIteYJ5kSkiAMuYOCq33VqseXehhU_8C6wem9lPj0WQ2eTNFqq0fd2VoJvJejEtKs0aKpOyPdb6_Q9ngo08zTxqrKCGWlaIXueylsBUEEHCj76_QGMaM8gg</recordid><startdate>20191008</startdate><enddate>20191008</enddate><creator>Calvo-Almazan, Irene</creator><creator>Ulvestad, Andrew P.</creator><creator>Colegrove, Eric</creator><creator>Ablekim, Tursun</creator><creator>Holt, Martin V.</creator><creator>Hill, Megan O.</creator><creator>Maddali, Siddharth</creator><creator>Lauhon, Lincoln J.</creator><creator>Bertoni, Mariana I.</creator><creator>Huang, Xiaojing</creator><creator>Yan, Hanfei</creator><creator>Nazaretski, Evgeny</creator><creator>Chu, Yong S.</creator><creator>Hruszkewycz, Stephan O.</creator><creator>Stuckelberger, Michael Elias</creator><general>IEEE</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000345166250</orcidid><orcidid>https://orcid.org/000000020415837X</orcidid><orcidid>https://orcid.org/0000000282445235</orcidid><orcidid>https://orcid.org/0000000238112193</orcidid><orcidid>https://orcid.org/0000000274427862</orcidid></search><sort><creationdate>20191008</creationdate><title>Strain Mapping of CdTe Grains in Photovoltaic Devices</title><author>Calvo-Almazan, Irene ; Ulvestad, Andrew P. ; Colegrove, Eric ; Ablekim, Tursun ; Holt, Martin V. ; Hill, Megan O. ; Maddali, Siddharth ; Lauhon, Lincoln J. ; Bertoni, Mariana I. ; Huang, Xiaojing ; Yan, Hanfei ; Nazaretski, Evgeny ; Chu, Yong S. ; Hruszkewycz, Stephan O. ; Stuckelberger, Michael Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15714123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CdTe</topic><topic>MATERIALS SCIENCE</topic><topic>multimodal</topic><topic>nanodiffraction</topic><topic>photovoltaic</topic><topic>solar cells</topic><topic>strain</topic><topic>X-ray</topic><topic>X-ray beam induced current (XBIC)</topic><topic>X-ray diffraction (XRD)</topic><topic>X-ray fluorescence (XRF)</topic><topic>X-ray microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo-Almazan, Irene</creatorcontrib><creatorcontrib>Ulvestad, Andrew P.</creatorcontrib><creatorcontrib>Colegrove, Eric</creatorcontrib><creatorcontrib>Ablekim, Tursun</creatorcontrib><creatorcontrib>Holt, Martin V.</creatorcontrib><creatorcontrib>Hill, Megan O.</creatorcontrib><creatorcontrib>Maddali, Siddharth</creatorcontrib><creatorcontrib>Lauhon, Lincoln J.</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Huang, Xiaojing</creatorcontrib><creatorcontrib>Yan, Hanfei</creatorcontrib><creatorcontrib>Nazaretski, Evgeny</creatorcontrib><creatorcontrib>Chu, Yong S.</creatorcontrib><creatorcontrib>Hruszkewycz, Stephan O.</creatorcontrib><creatorcontrib>Stuckelberger, Michael Elias</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo-Almazan, Irene</au><au>Ulvestad, Andrew P.</au><au>Colegrove, Eric</au><au>Ablekim, Tursun</au><au>Holt, Martin V.</au><au>Hill, Megan O.</au><au>Maddali, Siddharth</au><au>Lauhon, Lincoln J.</au><au>Bertoni, Mariana I.</au><au>Huang, Xiaojing</au><au>Yan, Hanfei</au><au>Nazaretski, Evgeny</au><au>Chu, Yong S.</au><au>Hruszkewycz, Stephan O.</au><au>Stuckelberger, Michael Elias</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Mapping of CdTe Grains in Photovoltaic Devices</atitle><jtitle>IEEE journal of photovoltaics</jtitle><date>2019-10-08</date><risdate>2019</risdate><issn>2156-3381</issn><eissn>2156-3403</eissn><abstract>Strain within grains and at grain boundaries (GBs) in polycrystalline thin-film absorber layers limits the overall performance because of higher defect concentrations and band fluctuations. Yet, the nanoscale strain distribution in operational devices is not easily accessible using standard methods. X-ray nanodiffraction offers the unique possibility to evaluate the strain or lattice spacing at nanoscale resolution. Moreover, the combination of nanodiffraction with additional techniques in the framework of multimodal scanning X-ray microscopy enables the direct correlation of the strain with material and device parameters such as the elemental distribution or local performance. This method is applied for the investigation of the strain distribution in CdTe grains in fully operational photovoltaic solar cells. It is found that the lattice spacing in the (111) direction remains fairly constant in the grain cores but systematically decreases at the GBs. The lower strain at GBs is accompanied by an increase of the total tilt. These observations are both compatible with the inhomogeneous incorporation of smaller atoms into the lattice, and local stress induced by neighboring grains.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2942487</doi><orcidid>https://orcid.org/0000000345166250</orcidid><orcidid>https://orcid.org/000000020415837X</orcidid><orcidid>https://orcid.org/0000000282445235</orcidid><orcidid>https://orcid.org/0000000238112193</orcidid><orcidid>https://orcid.org/0000000274427862</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2019-10 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_osti_scitechconnect_1571412 |
source | IEEE Electronic Library (IEL) |
subjects | CdTe MATERIALS SCIENCE multimodal nanodiffraction photovoltaic solar cells strain X-ray X-ray beam induced current (XBIC) X-ray diffraction (XRD) X-ray fluorescence (XRF) X-ray microscopy |
title | Strain Mapping of CdTe Grains in Photovoltaic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Mapping%20of%20CdTe%20Grains%20in%20Photovoltaic%20Devices&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Calvo-Almazan,%20Irene&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-10-08&rft.issn=2156-3381&rft.eissn=2156-3403&rft_id=info:doi/10.1109/JPHOTOV.2019.2942487&rft_dat=%3Costi%3E1571412%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |