Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite

Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-11, Vol.9 (44), p.n/a
Hauptverfasser: Qin, Lei, Xiao, Neng, Zheng, Jingfeng, Lei, Yu, Zhai, Dengyun, Wu, Yiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 44
container_start_page
container_title Advanced energy materials
container_volume 9
creator Qin, Lei
Xiao, Neng
Zheng, Jingfeng
Lei, Yu
Zhai, Dengyun
Wu, Yiying
description Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.
doi_str_mv 10.1002/aenm.201902618
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1570486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318496034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnRxKZ263qi66nAMBSWtamtyfiTqFsJZWhLM4UKNKaufASf0SeRZvxZyuJyF9-599wDwCmCfQQhvpDarvsYIg4xRewAdBBFJKeMwMPfvsDHoBfCCqZHOIJF0QHPlVOyMW-6zqZmsfx8_xg5q7SNXkbjbDZutIreNbuoQ3bpXIjZvYsyBLNdZw_RebnQmbE_4srJ2thFNvFyszRRn4CjuWyC7n3_XfB0NX4cTfPqbnI9Gla5IoSzvFSYlwNOYF0WkmKpMWcUDiSVkimN61Rqko5gCNezOayxpHyGKZ0NSkkQq4suOGvnJoNGBJVWq6Vy1ib3ApUDSBhN0HkLbbx72eoQxcptvU2-BC4QI5zCgiSq31LKuxC8nouNN2vpdwJBsc9a7LMWv1knAW8Fr6bRu39oMRzf3vxpvwAMFoRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318496034</pqid></control><display><type>article</type><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</creator><creatorcontrib>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</creatorcontrib><description>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902618</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Electrode materials ; Electrolytes ; Graphite ; graphite intercalation compounds ; high‐loading graphite ; Intercalation ; Intercalation compounds ; Interlayers ; Ion currents ; Lithium ; localized high‐concentration electrolytes ; Oxidation ; Potassium ; potassium‐ion batteries ; Rechargeable batteries ; Solid electrolytes ; solvation ; Stability</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (44), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</citedby><cites>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</cites><orcidid>0000-0002-1862-4888 ; 0000-0001-7012-9887 ; 0000-0002-9084-2601 ; 0000-0001-9359-1863 ; 0000000290842601 ; 0000000170129887 ; 0000000218624888 ; 0000000193591863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1570486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Xiao, Neng</creatorcontrib><creatorcontrib>Zheng, Jingfeng</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><title>Advanced energy materials</title><description>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</description><subject>Anodes</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>graphite intercalation compounds</subject><subject>high‐loading graphite</subject><subject>Intercalation</subject><subject>Intercalation compounds</subject><subject>Interlayers</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>localized high‐concentration electrolytes</subject><subject>Oxidation</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>solvation</subject><subject>Stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEUhYnRxKZ263qi66nAMBSWtamtyfiTqFsJZWhLM4UKNKaufASf0SeRZvxZyuJyF9-599wDwCmCfQQhvpDarvsYIg4xRewAdBBFJKeMwMPfvsDHoBfCCqZHOIJF0QHPlVOyMW-6zqZmsfx8_xg5q7SNXkbjbDZutIreNbuoQ3bpXIjZvYsyBLNdZw_RebnQmbE_4srJ2thFNvFyszRRn4CjuWyC7n3_XfB0NX4cTfPqbnI9Gla5IoSzvFSYlwNOYF0WkmKpMWcUDiSVkimN61Rqko5gCNezOayxpHyGKZ0NSkkQq4suOGvnJoNGBJVWq6Vy1ib3ApUDSBhN0HkLbbx72eoQxcptvU2-BC4QI5zCgiSq31LKuxC8nouNN2vpdwJBsc9a7LMWv1knAW8Fr6bRu39oMRzf3vxpvwAMFoRY</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Qin, Lei</creator><creator>Xiao, Neng</creator><creator>Zheng, Jingfeng</creator><creator>Lei, Yu</creator><creator>Zhai, Dengyun</creator><creator>Wu, Yiying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1862-4888</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid><orcidid>https://orcid.org/0000-0002-9084-2601</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000000290842601</orcidid><orcidid>https://orcid.org/0000000170129887</orcidid><orcidid>https://orcid.org/0000000218624888</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid></search><sort><creationdate>20191101</creationdate><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><author>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>graphite intercalation compounds</topic><topic>high‐loading graphite</topic><topic>Intercalation</topic><topic>Intercalation compounds</topic><topic>Interlayers</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>localized high‐concentration electrolytes</topic><topic>Oxidation</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>solvation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Xiao, Neng</creatorcontrib><creatorcontrib>Zheng, Jingfeng</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Lei</au><au>Xiao, Neng</au><au>Zheng, Jingfeng</au><au>Lei, Yu</au><au>Zhai, Dengyun</au><au>Wu, Yiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201902618</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1862-4888</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid><orcidid>https://orcid.org/0000-0002-9084-2601</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000000290842601</orcidid><orcidid>https://orcid.org/0000000170129887</orcidid><orcidid>https://orcid.org/0000000218624888</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-11, Vol.9 (44), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1570486
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Electrode materials
Electrolytes
Graphite
graphite intercalation compounds
high‐loading graphite
Intercalation
Intercalation compounds
Interlayers
Ion currents
Lithium
localized high‐concentration electrolytes
Oxidation
Potassium
potassium‐ion batteries
Rechargeable batteries
Solid electrolytes
solvation
Stability
title Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20High%E2%80%90Concentration%20Electrolytes%20Boost%20Potassium%20Storage%20in%20High%E2%80%90Loading%20Graphite&rft.jtitle=Advanced%20energy%20materials&rft.au=Qin,%20Lei&rft.date=2019-11-01&rft.volume=9&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902618&rft_dat=%3Cproquest_osti_%3E2318496034%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318496034&rft_id=info:pmid/&rfr_iscdi=true