Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-11, Vol.9 (44), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 44 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Qin, Lei Xiao, Neng Zheng, Jingfeng Lei, Yu Zhai, Dengyun Wu, Yiying |
description | Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.
A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay. |
doi_str_mv | 10.1002/aenm.201902618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1570486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2318496034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnRxKZ263qi66nAMBSWtamtyfiTqFsJZWhLM4UKNKaufASf0SeRZvxZyuJyF9-599wDwCmCfQQhvpDarvsYIg4xRewAdBBFJKeMwMPfvsDHoBfCCqZHOIJF0QHPlVOyMW-6zqZmsfx8_xg5q7SNXkbjbDZutIreNbuoQ3bpXIjZvYsyBLNdZw_RebnQmbE_4srJ2thFNvFyszRRn4CjuWyC7n3_XfB0NX4cTfPqbnI9Gla5IoSzvFSYlwNOYF0WkmKpMWcUDiSVkimN61Rqko5gCNezOayxpHyGKZ0NSkkQq4suOGvnJoNGBJVWq6Vy1ib3ApUDSBhN0HkLbbx72eoQxcptvU2-BC4QI5zCgiSq31LKuxC8nouNN2vpdwJBsc9a7LMWv1knAW8Fr6bRu39oMRzf3vxpvwAMFoRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2318496034</pqid></control><display><type>article</type><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</creator><creatorcontrib>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</creatorcontrib><description>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.
A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201902618</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Electrode materials ; Electrolytes ; Graphite ; graphite intercalation compounds ; high‐loading graphite ; Intercalation ; Intercalation compounds ; Interlayers ; Ion currents ; Lithium ; localized high‐concentration electrolytes ; Oxidation ; Potassium ; potassium‐ion batteries ; Rechargeable batteries ; Solid electrolytes ; solvation ; Stability</subject><ispartof>Advanced energy materials, 2019-11, Vol.9 (44), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</citedby><cites>FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</cites><orcidid>0000-0002-1862-4888 ; 0000-0001-7012-9887 ; 0000-0002-9084-2601 ; 0000-0001-9359-1863 ; 0000000290842601 ; 0000000170129887 ; 0000000218624888 ; 0000000193591863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201902618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201902618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1570486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Xiao, Neng</creatorcontrib><creatorcontrib>Zheng, Jingfeng</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><title>Advanced energy materials</title><description>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.
A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</description><subject>Anodes</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>graphite intercalation compounds</subject><subject>high‐loading graphite</subject><subject>Intercalation</subject><subject>Intercalation compounds</subject><subject>Interlayers</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>localized high‐concentration electrolytes</subject><subject>Oxidation</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>solvation</subject><subject>Stability</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEUhYnRxKZ263qi66nAMBSWtamtyfiTqFsJZWhLM4UKNKaufASf0SeRZvxZyuJyF9-599wDwCmCfQQhvpDarvsYIg4xRewAdBBFJKeMwMPfvsDHoBfCCqZHOIJF0QHPlVOyMW-6zqZmsfx8_xg5q7SNXkbjbDZutIreNbuoQ3bpXIjZvYsyBLNdZw_RebnQmbE_4srJ2thFNvFyszRRn4CjuWyC7n3_XfB0NX4cTfPqbnI9Gla5IoSzvFSYlwNOYF0WkmKpMWcUDiSVkimN61Rqko5gCNezOayxpHyGKZ0NSkkQq4suOGvnJoNGBJVWq6Vy1ib3ApUDSBhN0HkLbbx72eoQxcptvU2-BC4QI5zCgiSq31LKuxC8nouNN2vpdwJBsc9a7LMWv1knAW8Fr6bRu39oMRzf3vxpvwAMFoRY</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Qin, Lei</creator><creator>Xiao, Neng</creator><creator>Zheng, Jingfeng</creator><creator>Lei, Yu</creator><creator>Zhai, Dengyun</creator><creator>Wu, Yiying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1862-4888</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid><orcidid>https://orcid.org/0000-0002-9084-2601</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000000290842601</orcidid><orcidid>https://orcid.org/0000000170129887</orcidid><orcidid>https://orcid.org/0000000218624888</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid></search><sort><creationdate>20191101</creationdate><title>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</title><author>Qin, Lei ; Xiao, Neng ; Zheng, Jingfeng ; Lei, Yu ; Zhai, Dengyun ; Wu, Yiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4498-5c2957940d53a62ae298607a6aa8ce2d8ced4614812dbf0d2a69b266b75a418d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>graphite intercalation compounds</topic><topic>high‐loading graphite</topic><topic>Intercalation</topic><topic>Intercalation compounds</topic><topic>Interlayers</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>localized high‐concentration electrolytes</topic><topic>Oxidation</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>solvation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Lei</creatorcontrib><creatorcontrib>Xiao, Neng</creatorcontrib><creatorcontrib>Zheng, Jingfeng</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Zhai, Dengyun</creatorcontrib><creatorcontrib>Wu, Yiying</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Lei</au><au>Xiao, Neng</au><au>Zheng, Jingfeng</au><au>Lei, Yu</au><au>Zhai, Dengyun</au><au>Wu, Yiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite</atitle><jtitle>Advanced energy materials</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>9</volume><issue>44</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation.
A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201902618</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1862-4888</orcidid><orcidid>https://orcid.org/0000-0001-7012-9887</orcidid><orcidid>https://orcid.org/0000-0002-9084-2601</orcidid><orcidid>https://orcid.org/0000-0001-9359-1863</orcidid><orcidid>https://orcid.org/0000000290842601</orcidid><orcidid>https://orcid.org/0000000170129887</orcidid><orcidid>https://orcid.org/0000000218624888</orcidid><orcidid>https://orcid.org/0000000193591863</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-11, Vol.9 (44), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1570486 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Electrode materials Electrolytes Graphite graphite intercalation compounds high‐loading graphite Intercalation Intercalation compounds Interlayers Ion currents Lithium localized high‐concentration electrolytes Oxidation Potassium potassium‐ion batteries Rechargeable batteries Solid electrolytes solvation Stability |
title | Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20High%E2%80%90Concentration%20Electrolytes%20Boost%20Potassium%20Storage%20in%20High%E2%80%90Loading%20Graphite&rft.jtitle=Advanced%20energy%20materials&rft.au=Qin,%20Lei&rft.date=2019-11-01&rft.volume=9&rft.issue=44&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201902618&rft_dat=%3Cproquest_osti_%3E2318496034%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2318496034&rft_id=info:pmid/&rfr_iscdi=true |