Localized High‐Concentration Electrolytes Boost Potassium Storage in High‐Loading Graphite

Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-11, Vol.9 (44), p.n/a
Hauptverfasser: Qin, Lei, Xiao, Neng, Zheng, Jingfeng, Lei, Yu, Zhai, Dengyun, Wu, Yiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm−1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. A localized high‐concentration electrolyte is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable potassium fluoride (KF)‐rich passivation layer on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. The potassium‐ion batteries with the high‐loading graphite (≈8 mg cm−2) anode can operate over 300 cycles with negligible capacity decay.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201902618