Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting

For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-04, Vol.8 (13), p.8445-8451
Hauptverfasser: DeAngelis, Alexander Daniel, Kemp, Kingsley Christian, Gaillard, Nicolas, Kim, Kwang S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8451
container_issue 13
container_start_page 8445
container_title ACS applied materials & interfaces
container_volume 8
creator DeAngelis, Alexander Daniel
Kemp, Kingsley Christian
Gaillard, Nicolas
Kim, Kwang S
description For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.
doi_str_mv 10.1021/acsami.5b12178
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1570464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1779885771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj-uHmXxVIXWJJtsNsdS_CgoCioePIRpmrUpu0ndZA_990a3ehMGZsg880IehE4JHhNMyRXoAI0d8zmhRJQ7aEAkY6OScrr7NzN2gA5DWGFc5BTzfXRABca5oMUAvU9ctI13m-FsNrvInru6sguTvSyty25s3YQMUmVPSx89OJ9WDxBNa6HOEvHzrCFCvYlWZ2_fq-x5XdsYrfs4RnsV1MGcbPsRer25fpneje4fb2fTyf0IWJHHEa-I4NjISgKFarGQFETBNC_p3FDCucFalEXO8_QTCqU0OZNaAgdSSpJafoTO-1wfolVB22j0UnvnjI6KcIFZwRI07KF16z87E6JqbNCmrsEZ3wVFhJBlyYUgCR33qG59CK2p1Lq1DbQbRbD6tq5662prPR2cbbO7eWMWf_iv5gRc9kA6VCvftS75-C_tC7Dbivs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779885771</pqid></control><display><type>article</type><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><source>ACS Publications</source><creator>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S</creator><creatorcontrib>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S ; Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><description>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b12178</identifier><identifier>PMID: 27003726</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>antimony sulfide ; MATERIALS SCIENCE ; PEC ; photocatalytic ; thin film ; water splitting</subject><ispartof>ACS applied materials &amp; interfaces, 2016-04, Vol.8 (13), p.8445-8451</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</citedby><cites>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b12178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b12178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27003726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1570464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DeAngelis, Alexander Daniel</creatorcontrib><creatorcontrib>Kemp, Kingsley Christian</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Kim, Kwang S</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</description><subject>antimony sulfide</subject><subject>MATERIALS SCIENCE</subject><subject>PEC</subject><subject>photocatalytic</subject><subject>thin film</subject><subject>water splitting</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWj-uHmXxVIXWJJtsNsdS_CgoCioePIRpmrUpu0ndZA_990a3ehMGZsg880IehE4JHhNMyRXoAI0d8zmhRJQ7aEAkY6OScrr7NzN2gA5DWGFc5BTzfXRABca5oMUAvU9ctI13m-FsNrvInru6sguTvSyty25s3YQMUmVPSx89OJ9WDxBNa6HOEvHzrCFCvYlWZ2_fq-x5XdsYrfs4RnsV1MGcbPsRer25fpneje4fb2fTyf0IWJHHEa-I4NjISgKFarGQFETBNC_p3FDCucFalEXO8_QTCqU0OZNaAgdSSpJafoTO-1wfolVB22j0UnvnjI6KcIFZwRI07KF16z87E6JqbNCmrsEZ3wVFhJBlyYUgCR33qG59CK2p1Lq1DbQbRbD6tq5662prPR2cbbO7eWMWf_iv5gRc9kA6VCvftS75-C_tC7Dbivs</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>DeAngelis, Alexander Daniel</creator><creator>Kemp, Kingsley Christian</creator><creator>Gaillard, Nicolas</creator><creator>Kim, Kwang S</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160406</creationdate><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><author>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>antimony sulfide</topic><topic>MATERIALS SCIENCE</topic><topic>PEC</topic><topic>photocatalytic</topic><topic>thin film</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeAngelis, Alexander Daniel</creatorcontrib><creatorcontrib>Kemp, Kingsley Christian</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Kim, Kwang S</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeAngelis, Alexander Daniel</au><au>Kemp, Kingsley Christian</au><au>Gaillard, Nicolas</au><au>Kim, Kwang S</au><aucorp>Univ. of Hawaii, Honolulu, HI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-04-06</date><risdate>2016</risdate><volume>8</volume><issue>13</issue><spage>8445</spage><epage>8451</epage><pages>8445-8451</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27003726</pmid><doi>10.1021/acsami.5b12178</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-04, Vol.8 (13), p.8445-8451
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1570464
source ACS Publications
subjects antimony sulfide
MATERIALS SCIENCE
PEC
photocatalytic
thin film
water splitting
title Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimony(III)%20Sulfide%20Thin%20Films%20as%20a%20Photoanode%20Material%20in%20Photocatalytic%20Water%20Splitting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=DeAngelis,%20Alexander%20Daniel&rft.aucorp=Univ.%20of%20Hawaii,%20Honolulu,%20HI%20(United%20States)&rft.date=2016-04-06&rft.volume=8&rft.issue=13&rft.spage=8445&rft.epage=8451&rft.pages=8445-8451&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b12178&rft_dat=%3Cproquest_osti_%3E1779885771%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779885771&rft_id=info:pmid/27003726&rfr_iscdi=true