Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting
For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measu...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-04, Vol.8 (13), p.8445-8451 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8451 |
---|---|
container_issue | 13 |
container_start_page | 8445 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | DeAngelis, Alexander Daniel Kemp, Kingsley Christian Gaillard, Nicolas Kim, Kwang S |
description | For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects. |
doi_str_mv | 10.1021/acsami.5b12178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1570464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1779885771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj-uHmXxVIXWJJtsNsdS_CgoCioePIRpmrUpu0ndZA_990a3ehMGZsg880IehE4JHhNMyRXoAI0d8zmhRJQ7aEAkY6OScrr7NzN2gA5DWGFc5BTzfXRABca5oMUAvU9ctI13m-FsNrvInru6sguTvSyty25s3YQMUmVPSx89OJ9WDxBNa6HOEvHzrCFCvYlWZ2_fq-x5XdsYrfs4RnsV1MGcbPsRer25fpneje4fb2fTyf0IWJHHEa-I4NjISgKFarGQFETBNC_p3FDCucFalEXO8_QTCqU0OZNaAgdSSpJafoTO-1wfolVB22j0UnvnjI6KcIFZwRI07KF16z87E6JqbNCmrsEZ3wVFhJBlyYUgCR33qG59CK2p1Lq1DbQbRbD6tq5662prPR2cbbO7eWMWf_iv5gRc9kA6VCvftS75-C_tC7Dbivs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779885771</pqid></control><display><type>article</type><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><source>ACS Publications</source><creator>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S</creator><creatorcontrib>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S ; Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><description>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b12178</identifier><identifier>PMID: 27003726</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>antimony sulfide ; MATERIALS SCIENCE ; PEC ; photocatalytic ; thin film ; water splitting</subject><ispartof>ACS applied materials & interfaces, 2016-04, Vol.8 (13), p.8445-8451</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</citedby><cites>FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b12178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b12178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27003726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1570464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>DeAngelis, Alexander Daniel</creatorcontrib><creatorcontrib>Kemp, Kingsley Christian</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Kim, Kwang S</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</description><subject>antimony sulfide</subject><subject>MATERIALS SCIENCE</subject><subject>PEC</subject><subject>photocatalytic</subject><subject>thin film</subject><subject>water splitting</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWj-uHmXxVIXWJJtsNsdS_CgoCioePIRpmrUpu0ndZA_990a3ehMGZsg880IehE4JHhNMyRXoAI0d8zmhRJQ7aEAkY6OScrr7NzN2gA5DWGFc5BTzfXRABca5oMUAvU9ctI13m-FsNrvInru6sguTvSyty25s3YQMUmVPSx89OJ9WDxBNa6HOEvHzrCFCvYlWZ2_fq-x5XdsYrfs4RnsV1MGcbPsRer25fpneje4fb2fTyf0IWJHHEa-I4NjISgKFarGQFETBNC_p3FDCucFalEXO8_QTCqU0OZNaAgdSSpJafoTO-1wfolVB22j0UnvnjI6KcIFZwRI07KF16z87E6JqbNCmrsEZ3wVFhJBlyYUgCR33qG59CK2p1Lq1DbQbRbD6tq5662prPR2cbbO7eWMWf_iv5gRc9kA6VCvftS75-C_tC7Dbivs</recordid><startdate>20160406</startdate><enddate>20160406</enddate><creator>DeAngelis, Alexander Daniel</creator><creator>Kemp, Kingsley Christian</creator><creator>Gaillard, Nicolas</creator><creator>Kim, Kwang S</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160406</creationdate><title>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</title><author>DeAngelis, Alexander Daniel ; Kemp, Kingsley Christian ; Gaillard, Nicolas ; Kim, Kwang S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a463t-5f1750e9f9a2afdd92a764c582be2155e0c7863538242a89e349c9a5a1891a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>antimony sulfide</topic><topic>MATERIALS SCIENCE</topic><topic>PEC</topic><topic>photocatalytic</topic><topic>thin film</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeAngelis, Alexander Daniel</creatorcontrib><creatorcontrib>Kemp, Kingsley Christian</creatorcontrib><creatorcontrib>Gaillard, Nicolas</creatorcontrib><creatorcontrib>Kim, Kwang S</creatorcontrib><creatorcontrib>Univ. of Hawaii, Honolulu, HI (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeAngelis, Alexander Daniel</au><au>Kemp, Kingsley Christian</au><au>Gaillard, Nicolas</au><au>Kim, Kwang S</au><aucorp>Univ. of Hawaii, Honolulu, HI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-04-06</date><risdate>2016</risdate><volume>8</volume><issue>13</issue><spage>8445</spage><epage>8451</epage><pages>8445-8451</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>For the first time, we present exploratory investigations on the performance of thermally evaporated Sb2S3 thin film photoanodes for solar-assisted water-splitting applications. With a band gap of 1.72 eV, a 250 nm thick Sb2S3 photoanode showed a saturation photocurrent density of ∼600 μA cm–2 measured at 1.0 V reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 under 1-sun illumination, with an onset potential of ∼0.25 V RHE. However, subsequent photodegradation studies revealed that the material dissolves relatively quickly with the application of both illumination and bias. Nonetheless, Sb2S3 does have the advantage of having a relatively low optimal fabrication temperature of 300 °C and thus may have utility as a top cell absorber of a tandem device where the bottom cell is temperature sensitive, if protected from corrosion. Therefore, we characterized relevant aspects of the material in an attempt to explain the large difference between the theoretical maximum and measured current density. From our characterization it is believed that the photocatalytic efficiency of this material can be improved by modifying the surface to reduce optical reflection and addressing inherent issues such as high electrical resistivity and surface defects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27003726</pmid><doi>10.1021/acsami.5b12178</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-04, Vol.8 (13), p.8445-8451 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1570464 |
source | ACS Publications |
subjects | antimony sulfide MATERIALS SCIENCE PEC photocatalytic thin film water splitting |
title | Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimony(III)%20Sulfide%20Thin%20Films%20as%20a%20Photoanode%20Material%20in%20Photocatalytic%20Water%20Splitting&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=DeAngelis,%20Alexander%20Daniel&rft.aucorp=Univ.%20of%20Hawaii,%20Honolulu,%20HI%20(United%20States)&rft.date=2016-04-06&rft.volume=8&rft.issue=13&rft.spage=8445&rft.epage=8451&rft.pages=8445-8451&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b12178&rft_dat=%3Cproquest_osti_%3E1779885771%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779885771&rft_id=info:pmid/27003726&rfr_iscdi=true |