Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel
Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-09, Vol.765 (C), p.138268, Article 138268 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 138268 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 765 |
creator | Smith, Thale R. Sugar, Joshua D. Schoenung, Julie M. San Marchi, Chris |
description | Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects ( |
doi_str_mv | 10.1016/j.msea.2019.138268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1570260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319310548</els_id><sourcerecordid>2319175625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ed9db7bec7dc10e9fa121751988f92dd5e69acdaa303e3fd284db4431cea44c43</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWB9_wFXQ9dS85hFwI-ILCoLoOqTJTZvSZmqSUfz3ZhgXrlzlQr5z7zkchC4omVNCm-vNfJdAzxmhck55x5ruAM1o1_JKSN4cohmRjFY1kfwYnaS0IYRQQeoZGl5hq7PvQ1r7PV5C_gIIeKfD4LTJQ_RhhS04MDlhHSx2BV4NgPex30PMHhLuHdbW-uw_4Y8QLNZDyhDKh8Epax-2kFKZALZn6MjpbYLz3_cUvT_cv909VYuXx-e720VlhOhyBVbaZbsE01pDCUinKaNtTWXXOcmsraGR2litOeHAnWWdsEshODWghTCCn6LLaW-fslfJ-AxmbfoQSh5F65awhhToaoJKpo8BUlabfoih-FKMU1kONqwuFJsoE_uUIji1j36n47eiRI0dqI0aO1BjB2rqoIhuJhGUkJ8e4ugBggHr42jB9v4_-Q-JYJNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319175625</pqid></control><display><type>article</type><title>Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel</title><source>Access via ScienceDirect (Elsevier)</source><creator>Smith, Thale R. ; Sugar, Joshua D. ; Schoenung, Julie M. ; San Marchi, Chris</creator><creatorcontrib>Smith, Thale R. ; Sugar, Joshua D. ; Schoenung, Julie M. ; San Marchi, Chris ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects (<100 μm in diameter) have less effect on tensile and fatigue properties. Fatigue crack growth rate is less severely affected by defects than other properties, showing only local acceleration in the proximity of LoF defects. Therefore, shorter fatigue life is attributed to the role of LoF defects on facilitating fatigue crack initiation and to a lesser extent fatigue crack propagation. Additionally, the fatigue life can be normalized for defects by considering their effect on ultimate tensile strength, suggesting that in the limit of low defect population, the fatigue strength of additively manufactured stainless steel is similar to conventional wrought materials.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.138268</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acceleration ; Additive manufacturing (AM) ; Austenitic stainless steel ; Austenitic stainless steels ; Crack initiation ; Crack propagation ; Fatigue ; Fatigue failure ; Fatigue life ; Fatigue strength ; Fracture mechanics ; Manufacturing defects ; MATERIALS SCIENCE ; Metal fatigue ; Stainless steel ; Tensile properties ; Tensile strength ; Ultimate tensile strength</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.765 (C), p.138268, Article 138268</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 23, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ed9db7bec7dc10e9fa121751988f92dd5e69acdaa303e3fd284db4431cea44c43</citedby><cites>FETCH-LOGICAL-c448t-ed9db7bec7dc10e9fa121751988f92dd5e69acdaa303e3fd284db4431cea44c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.138268$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1570260$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Thale R.</creatorcontrib><creatorcontrib>Sugar, Joshua D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects (<100 μm in diameter) have less effect on tensile and fatigue properties. Fatigue crack growth rate is less severely affected by defects than other properties, showing only local acceleration in the proximity of LoF defects. Therefore, shorter fatigue life is attributed to the role of LoF defects on facilitating fatigue crack initiation and to a lesser extent fatigue crack propagation. Additionally, the fatigue life can be normalized for defects by considering their effect on ultimate tensile strength, suggesting that in the limit of low defect population, the fatigue strength of additively manufactured stainless steel is similar to conventional wrought materials.</description><subject>Acceleration</subject><subject>Additive manufacturing (AM)</subject><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue strength</subject><subject>Fracture mechanics</subject><subject>Manufacturing defects</subject><subject>MATERIALS SCIENCE</subject><subject>Metal fatigue</subject><subject>Stainless steel</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Ultimate tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWB9_wFXQ9dS85hFwI-ILCoLoOqTJTZvSZmqSUfz3ZhgXrlzlQr5z7zkchC4omVNCm-vNfJdAzxmhck55x5ruAM1o1_JKSN4cohmRjFY1kfwYnaS0IYRQQeoZGl5hq7PvQ1r7PV5C_gIIeKfD4LTJQ_RhhS04MDlhHSx2BV4NgPex30PMHhLuHdbW-uw_4Y8QLNZDyhDKh8Epax-2kFKZALZn6MjpbYLz3_cUvT_cv909VYuXx-e720VlhOhyBVbaZbsE01pDCUinKaNtTWXXOcmsraGR2litOeHAnWWdsEshODWghTCCn6LLaW-fslfJ-AxmbfoQSh5F65awhhToaoJKpo8BUlabfoih-FKMU1kONqwuFJsoE_uUIji1j36n47eiRI0dqI0aO1BjB2rqoIhuJhGUkJ8e4ugBggHr42jB9v4_-Q-JYJNA</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Smith, Thale R.</creator><creator>Sugar, Joshua D.</creator><creator>Schoenung, Julie M.</creator><creator>San Marchi, Chris</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190923</creationdate><title>Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel</title><author>Smith, Thale R. ; Sugar, Joshua D. ; Schoenung, Julie M. ; San Marchi, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ed9db7bec7dc10e9fa121751988f92dd5e69acdaa303e3fd284db4431cea44c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Additive manufacturing (AM)</topic><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue strength</topic><topic>Fracture mechanics</topic><topic>Manufacturing defects</topic><topic>MATERIALS SCIENCE</topic><topic>Metal fatigue</topic><topic>Stainless steel</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Thale R.</creatorcontrib><creatorcontrib>Sugar, Joshua D.</creatorcontrib><creatorcontrib>Schoenung, Julie M.</creatorcontrib><creatorcontrib>San Marchi, Chris</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Thale R.</au><au>Sugar, Joshua D.</au><au>Schoenung, Julie M.</au><au>San Marchi, Chris</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>765</volume><issue>C</issue><spage>138268</spage><pages>138268-</pages><artnum>138268</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects (<100 μm in diameter) have less effect on tensile and fatigue properties. Fatigue crack growth rate is less severely affected by defects than other properties, showing only local acceleration in the proximity of LoF defects. Therefore, shorter fatigue life is attributed to the role of LoF defects on facilitating fatigue crack initiation and to a lesser extent fatigue crack propagation. Additionally, the fatigue life can be normalized for defects by considering their effect on ultimate tensile strength, suggesting that in the limit of low defect population, the fatigue strength of additively manufactured stainless steel is similar to conventional wrought materials.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.138268</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-09, Vol.765 (C), p.138268, Article 138268 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_osti_scitechconnect_1570260 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acceleration Additive manufacturing (AM) Austenitic stainless steel Austenitic stainless steels Crack initiation Crack propagation Fatigue Fatigue failure Fatigue life Fatigue strength Fracture mechanics Manufacturing defects MATERIALS SCIENCE Metal fatigue Stainless steel Tensile properties Tensile strength Ultimate tensile strength |
title | Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A27%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20manufacturing%20defects%20and%20fatigue%20properties%20of%20additive%20manufactured%20austenitic%20stainless%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Smith,%20Thale%20R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2019-09-23&rft.volume=765&rft.issue=C&rft.spage=138268&rft.pages=138268-&rft.artnum=138268&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.138268&rft_dat=%3Cproquest_osti_%3E2319175625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319175625&rft_id=info:pmid/&rft_els_id=S0921509319310548&rfr_iscdi=true |