Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs
Depleted shale reservoirs are potentially attractive targets to store carbon dioxide (CO2) as free and adsorbed phases. The time-dependent efficiency factors that depict dynamic storage performance in shale are estimated as a function of key reservoir parameters, shapes of stimulated reservoir volum...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2019-06, Vol.246 (C), p.169-177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | C |
container_start_page | 169 |
container_title | Fuel (Guildford) |
container_volume | 246 |
creator | Myshakin, Evgeniy M. Singh, Harpreet Sanguinito, Sean Bromhal, Grant Goodman, Angela L. |
description | Depleted shale reservoirs are potentially attractive targets to store carbon dioxide (CO2) as free and adsorbed phases. The time-dependent efficiency factors that depict dynamic storage performance in shale are estimated as a function of key reservoir parameters, shapes of stimulated reservoir volume, and injection scenarios. Efficiency of CO2 storage and flow regimes are determined dynamically as CO2 is injected in a depleted shale formation for a time period of 60 years. The most effective reservoir utilization for carbon storage was achieved during the transition from predominant flow in the stimulated reservoir volume to flow into unfractured zones. That transition occurs within first 15–30 years of injection depending on cases considered. The importance of adsorption as a mechanism of storage is determined based on sensitivity, which indicates that the amount of CO2 stored by adsorption would be on average ∼26% of the CO2 stored as a free phase. |
doi_str_mv | 10.1016/j.fuel.2019.02.095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1569817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119303096</els_id><sourcerecordid>2218300192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e37b7896e2f196c3ee8db01a6944acd3f09fcbdbceb1746332f812d237a634f33</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOD_-gFdFr1vz0aYNeCPDqTAYiF6HNDnZUrpmJt1k_96Uee3VyYHnPbx5ELojuCCY8MeusHvoC4qJKDAtsKjO0Iw0NctrUrFzNMOJyinj5BJdxdhhjOumKmfoY9H7nyzA2m0hZmowWRx9UGvIwFqnHQz6mHmbzVc0c0MHegSTHqPPDOx6mLa4UT2kExHCwbsQb9CFVX2E2795jb4WL5_zt3y5en2fPy9zXTI-5sDqtm4EB2qJ4JoBNKbFRHFRlkobZrGwujWthpbUJWeM2oZQQ1mtOCstY9fo_nTXx9HJqN0IeqP9MKSSklRcNKRO0MMJ2gX_vYc4ys7vw5B6SUpJw5IXQRNFT5QOPsYAVu6C26pwlATLSbDs5CRYToIlpjIJTqGnUwjSJw8OwtQh-QLjwlTBePdf_BcDuIOx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218300192</pqid></control><display><type>article</type><title>Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs</title><source>Elsevier ScienceDirect Journals</source><creator>Myshakin, Evgeniy M. ; Singh, Harpreet ; Sanguinito, Sean ; Bromhal, Grant ; Goodman, Angela L.</creator><creatorcontrib>Myshakin, Evgeniy M. ; Singh, Harpreet ; Sanguinito, Sean ; Bromhal, Grant ; Goodman, Angela L. ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><description>Depleted shale reservoirs are potentially attractive targets to store carbon dioxide (CO2) as free and adsorbed phases. The time-dependent efficiency factors that depict dynamic storage performance in shale are estimated as a function of key reservoir parameters, shapes of stimulated reservoir volume, and injection scenarios. Efficiency of CO2 storage and flow regimes are determined dynamically as CO2 is injected in a depleted shale formation for a time period of 60 years. The most effective reservoir utilization for carbon storage was achieved during the transition from predominant flow in the stimulated reservoir volume to flow into unfractured zones. That transition occurs within first 15–30 years of injection depending on cases considered. The importance of adsorption as a mechanism of storage is determined based on sensitivity, which indicates that the amount of CO2 stored by adsorption would be on average ∼26% of the CO2 stored as a free phase.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.02.095</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>03 NATURAL GAS ; Adsorption ; Carbon dioxide ; Carbon sequestration ; Depletion ; Efficiency ; Flow ; Flow regimes ; Injection ; Rate transient analysis ; Reservoirs ; Shale ; Time dependence</subject><ispartof>Fuel (Guildford), 2019-06, Vol.246 (C), p.169-177</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e37b7896e2f196c3ee8db01a6944acd3f09fcbdbceb1746332f812d237a634f33</citedby><cites>FETCH-LOGICAL-c436t-e37b7896e2f196c3ee8db01a6944acd3f09fcbdbceb1746332f812d237a634f33</cites><orcidid>0000-0003-3004-3303 ; 0000000330043303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236119303096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1569817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Myshakin, Evgeniy M.</creatorcontrib><creatorcontrib>Singh, Harpreet</creatorcontrib><creatorcontrib>Sanguinito, Sean</creatorcontrib><creatorcontrib>Bromhal, Grant</creatorcontrib><creatorcontrib>Goodman, Angela L.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><title>Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs</title><title>Fuel (Guildford)</title><description>Depleted shale reservoirs are potentially attractive targets to store carbon dioxide (CO2) as free and adsorbed phases. The time-dependent efficiency factors that depict dynamic storage performance in shale are estimated as a function of key reservoir parameters, shapes of stimulated reservoir volume, and injection scenarios. Efficiency of CO2 storage and flow regimes are determined dynamically as CO2 is injected in a depleted shale formation for a time period of 60 years. The most effective reservoir utilization for carbon storage was achieved during the transition from predominant flow in the stimulated reservoir volume to flow into unfractured zones. That transition occurs within first 15–30 years of injection depending on cases considered. The importance of adsorption as a mechanism of storage is determined based on sensitivity, which indicates that the amount of CO2 stored by adsorption would be on average ∼26% of the CO2 stored as a free phase.</description><subject>03 NATURAL GAS</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Depletion</subject><subject>Efficiency</subject><subject>Flow</subject><subject>Flow regimes</subject><subject>Injection</subject><subject>Rate transient analysis</subject><subject>Reservoirs</subject><subject>Shale</subject><subject>Time dependence</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOD_-gFdFr1vz0aYNeCPDqTAYiF6HNDnZUrpmJt1k_96Uee3VyYHnPbx5ELojuCCY8MeusHvoC4qJKDAtsKjO0Iw0NctrUrFzNMOJyinj5BJdxdhhjOumKmfoY9H7nyzA2m0hZmowWRx9UGvIwFqnHQz6mHmbzVc0c0MHegSTHqPPDOx6mLa4UT2kExHCwbsQb9CFVX2E2795jb4WL5_zt3y5en2fPy9zXTI-5sDqtm4EB2qJ4JoBNKbFRHFRlkobZrGwujWthpbUJWeM2oZQQ1mtOCstY9fo_nTXx9HJqN0IeqP9MKSSklRcNKRO0MMJ2gX_vYc4ys7vw5B6SUpJw5IXQRNFT5QOPsYAVu6C26pwlATLSbDs5CRYToIlpjIJTqGnUwjSJw8OwtQh-QLjwlTBePdf_BcDuIOx</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Myshakin, Evgeniy M.</creator><creator>Singh, Harpreet</creator><creator>Sanguinito, Sean</creator><creator>Bromhal, Grant</creator><creator>Goodman, Angela L.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3004-3303</orcidid><orcidid>https://orcid.org/0000000330043303</orcidid></search><sort><creationdate>20190615</creationdate><title>Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs</title><author>Myshakin, Evgeniy M. ; Singh, Harpreet ; Sanguinito, Sean ; Bromhal, Grant ; Goodman, Angela L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e37b7896e2f196c3ee8db01a6944acd3f09fcbdbceb1746332f812d237a634f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>03 NATURAL GAS</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Depletion</topic><topic>Efficiency</topic><topic>Flow</topic><topic>Flow regimes</topic><topic>Injection</topic><topic>Rate transient analysis</topic><topic>Reservoirs</topic><topic>Shale</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myshakin, Evgeniy M.</creatorcontrib><creatorcontrib>Singh, Harpreet</creatorcontrib><creatorcontrib>Sanguinito, Sean</creatorcontrib><creatorcontrib>Bromhal, Grant</creatorcontrib><creatorcontrib>Goodman, Angela L.</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myshakin, Evgeniy M.</au><au>Singh, Harpreet</au><au>Sanguinito, Sean</au><au>Bromhal, Grant</au><au>Goodman, Angela L.</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>246</volume><issue>C</issue><spage>169</spage><epage>177</epage><pages>169-177</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Depleted shale reservoirs are potentially attractive targets to store carbon dioxide (CO2) as free and adsorbed phases. The time-dependent efficiency factors that depict dynamic storage performance in shale are estimated as a function of key reservoir parameters, shapes of stimulated reservoir volume, and injection scenarios. Efficiency of CO2 storage and flow regimes are determined dynamically as CO2 is injected in a depleted shale formation for a time period of 60 years. The most effective reservoir utilization for carbon storage was achieved during the transition from predominant flow in the stimulated reservoir volume to flow into unfractured zones. That transition occurs within first 15–30 years of injection depending on cases considered. The importance of adsorption as a mechanism of storage is determined based on sensitivity, which indicates that the amount of CO2 stored by adsorption would be on average ∼26% of the CO2 stored as a free phase.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.02.095</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3004-3303</orcidid><orcidid>https://orcid.org/0000000330043303</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-06, Vol.246 (C), p.169-177 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_osti_scitechconnect_1569817 |
source | Elsevier ScienceDirect Journals |
subjects | 03 NATURAL GAS Adsorption Carbon dioxide Carbon sequestration Depletion Efficiency Flow Flow regimes Injection Rate transient analysis Reservoirs Shale Time dependence |
title | Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20regimes%20and%20storage%20efficiency%20of%20CO2%20injected%20into%20depleted%20shale%20reservoirs&rft.jtitle=Fuel%20(Guildford)&rft.au=Myshakin,%20Evgeniy%20M.&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR%20(United%20States)&rft.date=2019-06-15&rft.volume=246&rft.issue=C&rft.spage=169&rft.epage=177&rft.pages=169-177&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.02.095&rft_dat=%3Cproquest_osti_%3E2218300192%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218300192&rft_id=info:pmid/&rft_els_id=S0016236119303096&rfr_iscdi=true |