Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST
This paper reports on disruption prediction using a shallow machine learning method known as a random forest, trained on large databases containing only plasma parameters that are available in real-time on Alcator C-Mod, DIII-D, and EAST. The database for each tokamak contains parameters sampled 1...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2019-07, Vol.59 (9), p.96015 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!