Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle

[Display omitted] Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2019-11, Vol.208 (2), p.152-164
Hauptverfasser: Dauban, Lise, Kamgoué, Alain, Wang, Renjie, Léger-Silvestre, Isabelle, Beckouët, Frédéric, Cantaloube, Sylvain, Gadal, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 2
container_start_page 152
container_title Journal of structural biology
container_volume 208
creator Dauban, Lise
Kamgoué, Alain
Wang, Renjie
Léger-Silvestre, Isabelle
Beckouët, Frédéric
Cantaloube, Sylvain
Gadal, Olivier
description [Display omitted] Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell imaging to quantitate the three-dimensional conformation of yeast Saccharomyces cerevisiae ribosomal DNA (rDNA). rDNA is confined within the nucleolus and is composed of about 200 copies representing about 10% of the yeast genome. To fluorescently label rDNA in living cells, we generated a set of nucleolar proteins fused to GFP or made use of a tagged rDNA, in which lacO repetitions were inserted in each repeat unit. We could show that nucleolus is not modified in appearance, shape or size during interphase while rDNA is highly reorganized. Computationally tracing 3D rDNA paths allowed us to quantitatively assess rDNA size, shape and geometry. During interphase, rDNA was progressively reorganized from a zig-zag segmented line of small size (5,5 µm) to a long, homogeneous, line-like structure of 8,7 µm in metaphase. Most importantly, whatever the cell-cycle stage considered, rDNA fibre could be decomposed in subdomains, as previously suggested for 3D chromatin organisation. Finally, we could determine that spatial reorganisation of these subdomains and establishment of rDNA mitotic organisation is under the control of the cohesin complex.
doi_str_mv 10.1016/j.jsb.2019.08.010
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1565969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847719301807</els_id><sourcerecordid>2281102311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6524c0a3890a529add33f9509d39a12c789e12898b7e77add75daae949fdd22a3</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYsozjj6AdxIcKWL1iRt2gZXj_HPCA9F1HW4TW6nebTJmLQPuvC7m9Jxlq5yyf2dA-eeLHvJaMEoq9-dilPsCk6ZLGhbUEYfZZeMSpG3tWgeb3PV5G3VNBfZsxhPlNKKcfY0uyhZVUlZt5fZn-8LuNn2VsNsvSO-J_OAxKwOJqtJhwOcrV_Ctgi289FPMJIPXw_kFh1GAs4Qt-gR_bhEYpZg3S1ZEeJMfoDWAwQ_rTqBGgOebbSAaRxHotckep496WGM-OL-vcp-ffr48_omP377_OX6cMx1JZo5rwWvNIWylRQEl2BMWfZSUGlKCYzrppXIeCvbrsGmSetGGACUleyN4RzKq-z17uvjbFXUdkY9aO8c6lkxUQtZywS93aEBRnUX7ARhVR6sujkc1fZHS1pWgtZnltg3O3sX_O8F46wmG7dc4NAvUXHeMkZ5yTaU7agOPsaA_YM3o2qrUZ1UqlFtNSraqlRj0ry6t1-6Cc2D4l9vCXi_A5iudrYYtlDoNBobtkzG2__Y_wW5ja3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281102311</pqid></control><display><type>article</type><title>Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dauban, Lise ; Kamgoué, Alain ; Wang, Renjie ; Léger-Silvestre, Isabelle ; Beckouët, Frédéric ; Cantaloube, Sylvain ; Gadal, Olivier</creator><creatorcontrib>Dauban, Lise ; Kamgoué, Alain ; Wang, Renjie ; Léger-Silvestre, Isabelle ; Beckouët, Frédéric ; Cantaloube, Sylvain ; Gadal, Olivier</creatorcontrib><description>[Display omitted] Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell imaging to quantitate the three-dimensional conformation of yeast Saccharomyces cerevisiae ribosomal DNA (rDNA). rDNA is confined within the nucleolus and is composed of about 200 copies representing about 10% of the yeast genome. To fluorescently label rDNA in living cells, we generated a set of nucleolar proteins fused to GFP or made use of a tagged rDNA, in which lacO repetitions were inserted in each repeat unit. We could show that nucleolus is not modified in appearance, shape or size during interphase while rDNA is highly reorganized. Computationally tracing 3D rDNA paths allowed us to quantitatively assess rDNA size, shape and geometry. During interphase, rDNA was progressively reorganized from a zig-zag segmented line of small size (5,5 µm) to a long, homogeneous, line-like structure of 8,7 µm in metaphase. Most importantly, whatever the cell-cycle stage considered, rDNA fibre could be decomposed in subdomains, as previously suggested for 3D chromatin organisation. Finally, we could determine that spatial reorganisation of these subdomains and establishment of rDNA mitotic organisation is under the control of the cohesin complex.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2019.08.010</identifier><identifier>PMID: 31449968</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry, Molecular Biology ; Cell Cycle - genetics ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Division - genetics ; Cell Division - physiology ; Cell Nucleolus - metabolism ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesin ; Cohesins ; DNA, Ribosomal - genetics ; DNA, Ribosomal - metabolism ; Interphasic chromosome organisation ; Life Sciences ; Molecular biology ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Ribosomal DNA ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Journal of structural biology, 2019-11, Vol.208 (2), p.152-164</ispartof><rights>2019 The Authors</rights><rights>Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6524c0a3890a529add33f9509d39a12c789e12898b7e77add75daae949fdd22a3</citedby><cites>FETCH-LOGICAL-c457t-6524c0a3890a529add33f9509d39a12c789e12898b7e77add75daae949fdd22a3</cites><orcidid>0000-0001-9421-0831 ; 0000-0002-2460-2175 ; 0000-0003-0866-4154 ; 0000000194210831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsb.2019.08.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31449968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03034506$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1565969$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauban, Lise</creatorcontrib><creatorcontrib>Kamgoué, Alain</creatorcontrib><creatorcontrib>Wang, Renjie</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Beckouët, Frédéric</creatorcontrib><creatorcontrib>Cantaloube, Sylvain</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><title>Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>[Display omitted] Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell imaging to quantitate the three-dimensional conformation of yeast Saccharomyces cerevisiae ribosomal DNA (rDNA). rDNA is confined within the nucleolus and is composed of about 200 copies representing about 10% of the yeast genome. To fluorescently label rDNA in living cells, we generated a set of nucleolar proteins fused to GFP or made use of a tagged rDNA, in which lacO repetitions were inserted in each repeat unit. We could show that nucleolus is not modified in appearance, shape or size during interphase while rDNA is highly reorganized. Computationally tracing 3D rDNA paths allowed us to quantitatively assess rDNA size, shape and geometry. During interphase, rDNA was progressively reorganized from a zig-zag segmented line of small size (5,5 µm) to a long, homogeneous, line-like structure of 8,7 µm in metaphase. Most importantly, whatever the cell-cycle stage considered, rDNA fibre could be decomposed in subdomains, as previously suggested for 3D chromatin organisation. Finally, we could determine that spatial reorganisation of these subdomains and establishment of rDNA mitotic organisation is under the control of the cohesin complex.</description><subject>Biochemistry, Molecular Biology</subject><subject>Cell Cycle - genetics</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Division - genetics</subject><subject>Cell Division - physiology</subject><subject>Cell Nucleolus - metabolism</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesin</subject><subject>Cohesins</subject><subject>DNA, Ribosomal - genetics</subject><subject>DNA, Ribosomal - metabolism</subject><subject>Interphasic chromosome organisation</subject><subject>Life Sciences</subject><subject>Molecular biology</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Ribosomal DNA</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-L1TAUxYsozjj6AdxIcKWL1iRt2gZXj_HPCA9F1HW4TW6nebTJmLQPuvC7m9Jxlq5yyf2dA-eeLHvJaMEoq9-dilPsCk6ZLGhbUEYfZZeMSpG3tWgeb3PV5G3VNBfZsxhPlNKKcfY0uyhZVUlZt5fZn-8LuNn2VsNsvSO-J_OAxKwOJqtJhwOcrV_Ctgi289FPMJIPXw_kFh1GAs4Qt-gR_bhEYpZg3S1ZEeJMfoDWAwQ_rTqBGgOebbSAaRxHotckep496WGM-OL-vcp-ffr48_omP377_OX6cMx1JZo5rwWvNIWylRQEl2BMWfZSUGlKCYzrppXIeCvbrsGmSetGGACUleyN4RzKq-z17uvjbFXUdkY9aO8c6lkxUQtZywS93aEBRnUX7ARhVR6sujkc1fZHS1pWgtZnltg3O3sX_O8F46wmG7dc4NAvUXHeMkZ5yTaU7agOPsaA_YM3o2qrUZ1UqlFtNSraqlRj0ry6t1-6Cc2D4l9vCXi_A5iudrYYtlDoNBobtkzG2__Y_wW5ja3c</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Dauban, Lise</creator><creator>Kamgoué, Alain</creator><creator>Wang, Renjie</creator><creator>Léger-Silvestre, Isabelle</creator><creator>Beckouët, Frédéric</creator><creator>Cantaloube, Sylvain</creator><creator>Gadal, Olivier</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0000-0002-2460-2175</orcidid><orcidid>https://orcid.org/0000-0003-0866-4154</orcidid><orcidid>https://orcid.org/0000000194210831</orcidid></search><sort><creationdate>20191101</creationdate><title>Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle</title><author>Dauban, Lise ; Kamgoué, Alain ; Wang, Renjie ; Léger-Silvestre, Isabelle ; Beckouët, Frédéric ; Cantaloube, Sylvain ; Gadal, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6524c0a3890a529add33f9509d39a12c789e12898b7e77add75daae949fdd22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Cell Cycle - genetics</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Division - genetics</topic><topic>Cell Division - physiology</topic><topic>Cell Nucleolus - metabolism</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesin</topic><topic>Cohesins</topic><topic>DNA, Ribosomal - genetics</topic><topic>DNA, Ribosomal - metabolism</topic><topic>Interphasic chromosome organisation</topic><topic>Life Sciences</topic><topic>Molecular biology</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Ribosomal DNA</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauban, Lise</creatorcontrib><creatorcontrib>Kamgoué, Alain</creatorcontrib><creatorcontrib>Wang, Renjie</creatorcontrib><creatorcontrib>Léger-Silvestre, Isabelle</creatorcontrib><creatorcontrib>Beckouët, Frédéric</creatorcontrib><creatorcontrib>Cantaloube, Sylvain</creatorcontrib><creatorcontrib>Gadal, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauban, Lise</au><au>Kamgoué, Alain</au><au>Wang, Renjie</au><au>Léger-Silvestre, Isabelle</au><au>Beckouët, Frédéric</au><au>Cantaloube, Sylvain</au><au>Gadal, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>208</volume><issue>2</issue><spage>152</spage><epage>164</epage><pages>152-164</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>[Display omitted] Spatial organisation of chromosomes is a determinant of genome stability and is required for proper mitotic segregation. However, visualization of individual chromatids in living cells and quantification of their geometry, remains technically challenging. Here, we used live cell imaging to quantitate the three-dimensional conformation of yeast Saccharomyces cerevisiae ribosomal DNA (rDNA). rDNA is confined within the nucleolus and is composed of about 200 copies representing about 10% of the yeast genome. To fluorescently label rDNA in living cells, we generated a set of nucleolar proteins fused to GFP or made use of a tagged rDNA, in which lacO repetitions were inserted in each repeat unit. We could show that nucleolus is not modified in appearance, shape or size during interphase while rDNA is highly reorganized. Computationally tracing 3D rDNA paths allowed us to quantitatively assess rDNA size, shape and geometry. During interphase, rDNA was progressively reorganized from a zig-zag segmented line of small size (5,5 µm) to a long, homogeneous, line-like structure of 8,7 µm in metaphase. Most importantly, whatever the cell-cycle stage considered, rDNA fibre could be decomposed in subdomains, as previously suggested for 3D chromatin organisation. Finally, we could determine that spatial reorganisation of these subdomains and establishment of rDNA mitotic organisation is under the control of the cohesin complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31449968</pmid><doi>10.1016/j.jsb.2019.08.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9421-0831</orcidid><orcidid>https://orcid.org/0000-0002-2460-2175</orcidid><orcidid>https://orcid.org/0000-0003-0866-4154</orcidid><orcidid>https://orcid.org/0000000194210831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2019-11, Vol.208 (2), p.152-164
issn 1047-8477
1095-8657
language eng
recordid cdi_osti_scitechconnect_1565969
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biochemistry, Molecular Biology
Cell Cycle - genetics
Cell Cycle - physiology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Division - genetics
Cell Division - physiology
Cell Nucleolus - metabolism
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Cohesin
Cohesins
DNA, Ribosomal - genetics
DNA, Ribosomal - metabolism
Interphasic chromosome organisation
Life Sciences
Molecular biology
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Ribosomal DNA
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
title Quantification of the dynamic behaviour of ribosomal DNA genes and nucleolus during yeast Saccharomyces cerevisiae cell cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20the%20dynamic%20behaviour%20of%20ribosomal%20DNA%20genes%20and%20nucleolus%20during%20yeast%20Saccharomyces%20cerevisiae%20cell%20cycle&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Dauban,%20Lise&rft.date=2019-11-01&rft.volume=208&rft.issue=2&rft.spage=152&rft.epage=164&rft.pages=152-164&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2019.08.010&rft_dat=%3Cproquest_osti_%3E2281102311%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2281102311&rft_id=info:pmid/31449968&rft_els_id=S1047847719301807&rfr_iscdi=true