Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6

Preindustrial control simulations with the third Hadley Centre Global Environmental Model, run in the Global Coupled configuration 3.1 of the Met Office Unified Model (HadGEM3‐GC3.1) are presented at two resolutions. These are N216ORCA025, which has a horizontal resolution of 60 km in the atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advances in modeling earth systems 2018-12, Vol.10 (12), p.3049-3075
Hauptverfasser: Menary, Matthew B., Kuhlbrodt, Till, Ridley, Jeff, Andrews, Martin B., Dimdore‐Miles, Oscar B., Deshayes, Julie, Eade, Rosie, Gray, Lesley, Ineson, Sarah, Mignot, Juliette, Roberts, Christopher D., Robson, Jon, Wood, Richard A., Xavier, Prince
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3075
container_issue 12
container_start_page 3049
container_title Journal of advances in modeling earth systems
container_volume 10
creator Menary, Matthew B.
Kuhlbrodt, Till
Ridley, Jeff
Andrews, Martin B.
Dimdore‐Miles, Oscar B.
Deshayes, Julie
Eade, Rosie
Gray, Lesley
Ineson, Sarah
Mignot, Juliette
Roberts, Christopher D.
Robson, Jon
Wood, Richard A.
Xavier, Prince
description Preindustrial control simulations with the third Hadley Centre Global Environmental Model, run in the Global Coupled configuration 3.1 of the Met Office Unified Model (HadGEM3‐GC3.1) are presented at two resolutions. These are N216ORCA025, which has a horizontal resolution of 60 km in the atmosphere and 0.25° in the ocean, and N96ORCA1, which has a horizontal resolution of 130 km in the atmosphere and 1° in the ocean. The aim of this study is to document the climate variability in these simulations, make comparisons against present‐day observations (albeit under different forcing), and discuss differences arising due to resolution. In terms of interannual variability in the leading modes of climate variability the two resolutions behave generally very similarly. Notable differences are in the westward extent of El Niño and the pattern of Atlantic multidecadal variability, in which N216ORCA025 compares more favorably to observations, and in the Antarctic Circumpolar Current, which is far too weak in N216ORCA025. In the North Atlantic region, N216ORCA025 has a stronger and deeper Atlantic Meridional Overturning Circulation, which compares well against observations, and reduced biases in temperature and salinity in the North Atlantic subpolar gyre. These simulations are being provided to the sixth Coupled Model Intercomparison Project (CMIP6) and provide a baseline against which further forced experiments may be assessed. Plain Language Summary In this paper, we present the latest computer models of the joint atmosphere and ocean system. These models were developed at the U.K. Met Office Hadley Centre. They are designed to simulate the climate of the past, present, and future and to be used in scientific analysis and decision making. In this study, the are intended to simulate a continuous preindustrial state, to provide a reference level for future experiments and analysis. We present two resolutions of the same model, where the resolution is analogous to the number of pixels on, for example, a smartphone display. We find that the model with greater resolution also simulates many aspects of the global climate better than the model with lower resolution. These include El Niño, sea surface temperature variability in the Atlantic Ocean, and the depth of the AMOC in the North Atlantic. However, in other aspects, such as the strength of the major current circling Antarctica, this version is worse. Key Points Preindustrial control simulations for CMIP6 with HadGEM
doi_str_mv 10.1029/2018MS001495
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1565753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167013629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4499-e162656c03469e392ee8f229a0570be829ce981cbef065e71867e7f0966c8073</originalsourceid><addsrcrecordid>eNp90MFKw0AQBuAgCtbqzQcIehJsnd1NZrM3S6htpcVCCx6XdLuhW9Js3U2V3nwEn9EnMSUiPXmaYfj4Yf4guCbQJUDFAwWSTGYAJBLxSdAiIqIdGiGeHu3nwYX3awBEpHEreJw6bcrlzlfOZEWY2rJytghnZrMrssrY0oevplqFw2w56E_Y9-fXIGVdEubWhelkNMXL4CzPCq-vfmc7mD_15-mwM34ZjNLeuKOiSIiOJkgxRgUsQqGZoFonOaUig5jDQidUKC0SohY6B4w1JwlyzXMQiCoBztrBTRNrfWWkV6bSaqVsWWpVSRJjzGNWo7sGrbJCbp3ZZG4vbWbksDeWhxtQIoBH7J3U9raxW2ffdtpXcm13rqxfkJQgB8KQilrdN0o5673T-V8sAXnoXB53XnPW8A9T6P2_Vj73Jn0KXAj2A3YqfjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167013629</pqid></control><display><type>article</type><title>Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Menary, Matthew B. ; Kuhlbrodt, Till ; Ridley, Jeff ; Andrews, Martin B. ; Dimdore‐Miles, Oscar B. ; Deshayes, Julie ; Eade, Rosie ; Gray, Lesley ; Ineson, Sarah ; Mignot, Juliette ; Roberts, Christopher D. ; Robson, Jon ; Wood, Richard A. ; Xavier, Prince</creator><creatorcontrib>Menary, Matthew B. ; Kuhlbrodt, Till ; Ridley, Jeff ; Andrews, Martin B. ; Dimdore‐Miles, Oscar B. ; Deshayes, Julie ; Eade, Rosie ; Gray, Lesley ; Ineson, Sarah ; Mignot, Juliette ; Roberts, Christopher D. ; Robson, Jon ; Wood, Richard A. ; Xavier, Prince ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Preindustrial control simulations with the third Hadley Centre Global Environmental Model, run in the Global Coupled configuration 3.1 of the Met Office Unified Model (HadGEM3‐GC3.1) are presented at two resolutions. These are N216ORCA025, which has a horizontal resolution of 60 km in the atmosphere and 0.25° in the ocean, and N96ORCA1, which has a horizontal resolution of 130 km in the atmosphere and 1° in the ocean. The aim of this study is to document the climate variability in these simulations, make comparisons against present‐day observations (albeit under different forcing), and discuss differences arising due to resolution. In terms of interannual variability in the leading modes of climate variability the two resolutions behave generally very similarly. Notable differences are in the westward extent of El Niño and the pattern of Atlantic multidecadal variability, in which N216ORCA025 compares more favorably to observations, and in the Antarctic Circumpolar Current, which is far too weak in N216ORCA025. In the North Atlantic region, N216ORCA025 has a stronger and deeper Atlantic Meridional Overturning Circulation, which compares well against observations, and reduced biases in temperature and salinity in the North Atlantic subpolar gyre. These simulations are being provided to the sixth Coupled Model Intercomparison Project (CMIP6) and provide a baseline against which further forced experiments may be assessed. Plain Language Summary In this paper, we present the latest computer models of the joint atmosphere and ocean system. These models were developed at the U.K. Met Office Hadley Centre. They are designed to simulate the climate of the past, present, and future and to be used in scientific analysis and decision making. In this study, the are intended to simulate a continuous preindustrial state, to provide a reference level for future experiments and analysis. We present two resolutions of the same model, where the resolution is analogous to the number of pixels on, for example, a smartphone display. We find that the model with greater resolution also simulates many aspects of the global climate better than the model with lower resolution. These include El Niño, sea surface temperature variability in the Atlantic Ocean, and the depth of the AMOC in the North Atlantic. However, in other aspects, such as the strength of the major current circling Antarctica, this version is worse. Key Points Preindustrial control simulations for CMIP6 with HadGEM3‐GC3.1 are presented using two model resolutions Our evaluation focuses on interannual variability in key climate indices The high‐resolution model shows improvements in ENSO, AMV, and in the depth structure of the AMOC. However, the ACC strength is worse</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1029/2018MS001495</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Antarctic Circumpolar Current ; Atlantic Meridional Overturning Circulation (AMOC) ; Atmosphere ; Climate ; climate modeling ; Climate models ; climate resolution ; Climate variability ; CMIP6 ; Computer models ; El Nino ; El Nino phenomena ; Environmental modeling ; ENVIRONMENTAL SCIENCES ; Geophysics ; GEOSCIENCES ; Global climate ; Interannual variability ; Intercomparison ; IPCC ; MATHEMATICS AND COMPUTING ; Ocean currents ; Oceans ; Physics ; preindustrial ; Reference levels ; Resolution ; Sciences of the Universe ; Sea surface ; Sea surface temperature ; Sea surface temperature variability ; Simulation ; Surface temperature ; Temperature variability ; Variability</subject><ispartof>Journal of advances in modeling earth systems, 2018-12, Vol.10 (12), p.3049-3075</ispartof><rights>2018 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - ShareAlike</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4499-e162656c03469e392ee8f229a0570be829ce981cbef065e71867e7f0966c8073</citedby><cites>FETCH-LOGICAL-c4499-e162656c03469e392ee8f229a0570be829ce981cbef065e71867e7f0966c8073</cites><orcidid>0000-0002-1381-384X ; 0000-0002-1462-686X ; 0000-0002-9627-2056 ; 0000-0002-2612-9924 ; 0000-0002-4894-898X ; 0000-0003-2328-6729 ; 0000-0002-3910-5606 ; 0000-0002-3960-9513 ; 0000-0002-3566-4232 ; 0000-0002-3467-018X ; 0000-0002-2958-6637 ; 0000-0003-3145-2264 ; 0000000323286729 ; 0000000229586637 ; 0000000226129924 ; 000000023467018X ; 000000021462686X ; 0000000235664232 ; 000000021381384X ; 0000000331452264 ; 0000000296272056 ; 0000000239105606 ; 000000024894898X ; 0000000239609513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018MS001495$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018MS001495$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02190743$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1565753$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Ridley, Jeff</creatorcontrib><creatorcontrib>Andrews, Martin B.</creatorcontrib><creatorcontrib>Dimdore‐Miles, Oscar B.</creatorcontrib><creatorcontrib>Deshayes, Julie</creatorcontrib><creatorcontrib>Eade, Rosie</creatorcontrib><creatorcontrib>Gray, Lesley</creatorcontrib><creatorcontrib>Ineson, Sarah</creatorcontrib><creatorcontrib>Mignot, Juliette</creatorcontrib><creatorcontrib>Roberts, Christopher D.</creatorcontrib><creatorcontrib>Robson, Jon</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Xavier, Prince</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6</title><title>Journal of advances in modeling earth systems</title><description>Preindustrial control simulations with the third Hadley Centre Global Environmental Model, run in the Global Coupled configuration 3.1 of the Met Office Unified Model (HadGEM3‐GC3.1) are presented at two resolutions. These are N216ORCA025, which has a horizontal resolution of 60 km in the atmosphere and 0.25° in the ocean, and N96ORCA1, which has a horizontal resolution of 130 km in the atmosphere and 1° in the ocean. The aim of this study is to document the climate variability in these simulations, make comparisons against present‐day observations (albeit under different forcing), and discuss differences arising due to resolution. In terms of interannual variability in the leading modes of climate variability the two resolutions behave generally very similarly. Notable differences are in the westward extent of El Niño and the pattern of Atlantic multidecadal variability, in which N216ORCA025 compares more favorably to observations, and in the Antarctic Circumpolar Current, which is far too weak in N216ORCA025. In the North Atlantic region, N216ORCA025 has a stronger and deeper Atlantic Meridional Overturning Circulation, which compares well against observations, and reduced biases in temperature and salinity in the North Atlantic subpolar gyre. These simulations are being provided to the sixth Coupled Model Intercomparison Project (CMIP6) and provide a baseline against which further forced experiments may be assessed. Plain Language Summary In this paper, we present the latest computer models of the joint atmosphere and ocean system. These models were developed at the U.K. Met Office Hadley Centre. They are designed to simulate the climate of the past, present, and future and to be used in scientific analysis and decision making. In this study, the are intended to simulate a continuous preindustrial state, to provide a reference level for future experiments and analysis. We present two resolutions of the same model, where the resolution is analogous to the number of pixels on, for example, a smartphone display. We find that the model with greater resolution also simulates many aspects of the global climate better than the model with lower resolution. These include El Niño, sea surface temperature variability in the Atlantic Ocean, and the depth of the AMOC in the North Atlantic. However, in other aspects, such as the strength of the major current circling Antarctica, this version is worse. Key Points Preindustrial control simulations for CMIP6 with HadGEM3‐GC3.1 are presented using two model resolutions Our evaluation focuses on interannual variability in key climate indices The high‐resolution model shows improvements in ENSO, AMV, and in the depth structure of the AMOC. However, the ACC strength is worse</description><subject>Antarctic Circumpolar Current</subject><subject>Atlantic Meridional Overturning Circulation (AMOC)</subject><subject>Atmosphere</subject><subject>Climate</subject><subject>climate modeling</subject><subject>Climate models</subject><subject>climate resolution</subject><subject>Climate variability</subject><subject>CMIP6</subject><subject>Computer models</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Environmental modeling</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Global climate</subject><subject>Interannual variability</subject><subject>Intercomparison</subject><subject>IPCC</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Physics</subject><subject>preindustrial</subject><subject>Reference levels</subject><subject>Resolution</subject><subject>Sciences of the Universe</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature variability</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Temperature variability</subject><subject>Variability</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp90MFKw0AQBuAgCtbqzQcIehJsnd1NZrM3S6htpcVCCx6XdLuhW9Js3U2V3nwEn9EnMSUiPXmaYfj4Yf4guCbQJUDFAwWSTGYAJBLxSdAiIqIdGiGeHu3nwYX3awBEpHEreJw6bcrlzlfOZEWY2rJytghnZrMrssrY0oevplqFw2w56E_Y9-fXIGVdEubWhelkNMXL4CzPCq-vfmc7mD_15-mwM34ZjNLeuKOiSIiOJkgxRgUsQqGZoFonOaUig5jDQidUKC0SohY6B4w1JwlyzXMQiCoBztrBTRNrfWWkV6bSaqVsWWpVSRJjzGNWo7sGrbJCbp3ZZG4vbWbksDeWhxtQIoBH7J3U9raxW2ffdtpXcm13rqxfkJQgB8KQilrdN0o5673T-V8sAXnoXB53XnPW8A9T6P2_Vj73Jn0KXAj2A3YqfjQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Menary, Matthew B.</creator><creator>Kuhlbrodt, Till</creator><creator>Ridley, Jeff</creator><creator>Andrews, Martin B.</creator><creator>Dimdore‐Miles, Oscar B.</creator><creator>Deshayes, Julie</creator><creator>Eade, Rosie</creator><creator>Gray, Lesley</creator><creator>Ineson, Sarah</creator><creator>Mignot, Juliette</creator><creator>Roberts, Christopher D.</creator><creator>Robson, Jon</creator><creator>Wood, Richard A.</creator><creator>Xavier, Prince</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1381-384X</orcidid><orcidid>https://orcid.org/0000-0002-1462-686X</orcidid><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid><orcidid>https://orcid.org/0000-0002-2612-9924</orcidid><orcidid>https://orcid.org/0000-0002-4894-898X</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-3910-5606</orcidid><orcidid>https://orcid.org/0000-0002-3960-9513</orcidid><orcidid>https://orcid.org/0000-0002-3566-4232</orcidid><orcidid>https://orcid.org/0000-0002-3467-018X</orcidid><orcidid>https://orcid.org/0000-0002-2958-6637</orcidid><orcidid>https://orcid.org/0000-0003-3145-2264</orcidid><orcidid>https://orcid.org/0000000323286729</orcidid><orcidid>https://orcid.org/0000000229586637</orcidid><orcidid>https://orcid.org/0000000226129924</orcidid><orcidid>https://orcid.org/000000023467018X</orcidid><orcidid>https://orcid.org/000000021462686X</orcidid><orcidid>https://orcid.org/0000000235664232</orcidid><orcidid>https://orcid.org/000000021381384X</orcidid><orcidid>https://orcid.org/0000000331452264</orcidid><orcidid>https://orcid.org/0000000296272056</orcidid><orcidid>https://orcid.org/0000000239105606</orcidid><orcidid>https://orcid.org/000000024894898X</orcidid><orcidid>https://orcid.org/0000000239609513</orcidid></search><sort><creationdate>201812</creationdate><title>Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6</title><author>Menary, Matthew B. ; Kuhlbrodt, Till ; Ridley, Jeff ; Andrews, Martin B. ; Dimdore‐Miles, Oscar B. ; Deshayes, Julie ; Eade, Rosie ; Gray, Lesley ; Ineson, Sarah ; Mignot, Juliette ; Roberts, Christopher D. ; Robson, Jon ; Wood, Richard A. ; Xavier, Prince</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4499-e162656c03469e392ee8f229a0570be829ce981cbef065e71867e7f0966c8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antarctic Circumpolar Current</topic><topic>Atlantic Meridional Overturning Circulation (AMOC)</topic><topic>Atmosphere</topic><topic>Climate</topic><topic>climate modeling</topic><topic>Climate models</topic><topic>climate resolution</topic><topic>Climate variability</topic><topic>CMIP6</topic><topic>Computer models</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Environmental modeling</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Global climate</topic><topic>Interannual variability</topic><topic>Intercomparison</topic><topic>IPCC</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Physics</topic><topic>preindustrial</topic><topic>Reference levels</topic><topic>Resolution</topic><topic>Sciences of the Universe</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature variability</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Temperature variability</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menary, Matthew B.</creatorcontrib><creatorcontrib>Kuhlbrodt, Till</creatorcontrib><creatorcontrib>Ridley, Jeff</creatorcontrib><creatorcontrib>Andrews, Martin B.</creatorcontrib><creatorcontrib>Dimdore‐Miles, Oscar B.</creatorcontrib><creatorcontrib>Deshayes, Julie</creatorcontrib><creatorcontrib>Eade, Rosie</creatorcontrib><creatorcontrib>Gray, Lesley</creatorcontrib><creatorcontrib>Ineson, Sarah</creatorcontrib><creatorcontrib>Mignot, Juliette</creatorcontrib><creatorcontrib>Roberts, Christopher D.</creatorcontrib><creatorcontrib>Robson, Jon</creatorcontrib><creatorcontrib>Wood, Richard A.</creatorcontrib><creatorcontrib>Xavier, Prince</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menary, Matthew B.</au><au>Kuhlbrodt, Till</au><au>Ridley, Jeff</au><au>Andrews, Martin B.</au><au>Dimdore‐Miles, Oscar B.</au><au>Deshayes, Julie</au><au>Eade, Rosie</au><au>Gray, Lesley</au><au>Ineson, Sarah</au><au>Mignot, Juliette</au><au>Roberts, Christopher D.</au><au>Robson, Jon</au><au>Wood, Richard A.</au><au>Xavier, Prince</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2018-12</date><risdate>2018</risdate><volume>10</volume><issue>12</issue><spage>3049</spage><epage>3075</epage><pages>3049-3075</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>Preindustrial control simulations with the third Hadley Centre Global Environmental Model, run in the Global Coupled configuration 3.1 of the Met Office Unified Model (HadGEM3‐GC3.1) are presented at two resolutions. These are N216ORCA025, which has a horizontal resolution of 60 km in the atmosphere and 0.25° in the ocean, and N96ORCA1, which has a horizontal resolution of 130 km in the atmosphere and 1° in the ocean. The aim of this study is to document the climate variability in these simulations, make comparisons against present‐day observations (albeit under different forcing), and discuss differences arising due to resolution. In terms of interannual variability in the leading modes of climate variability the two resolutions behave generally very similarly. Notable differences are in the westward extent of El Niño and the pattern of Atlantic multidecadal variability, in which N216ORCA025 compares more favorably to observations, and in the Antarctic Circumpolar Current, which is far too weak in N216ORCA025. In the North Atlantic region, N216ORCA025 has a stronger and deeper Atlantic Meridional Overturning Circulation, which compares well against observations, and reduced biases in temperature and salinity in the North Atlantic subpolar gyre. These simulations are being provided to the sixth Coupled Model Intercomparison Project (CMIP6) and provide a baseline against which further forced experiments may be assessed. Plain Language Summary In this paper, we present the latest computer models of the joint atmosphere and ocean system. These models were developed at the U.K. Met Office Hadley Centre. They are designed to simulate the climate of the past, present, and future and to be used in scientific analysis and decision making. In this study, the are intended to simulate a continuous preindustrial state, to provide a reference level for future experiments and analysis. We present two resolutions of the same model, where the resolution is analogous to the number of pixels on, for example, a smartphone display. We find that the model with greater resolution also simulates many aspects of the global climate better than the model with lower resolution. These include El Niño, sea surface temperature variability in the Atlantic Ocean, and the depth of the AMOC in the North Atlantic. However, in other aspects, such as the strength of the major current circling Antarctica, this version is worse. Key Points Preindustrial control simulations for CMIP6 with HadGEM3‐GC3.1 are presented using two model resolutions Our evaluation focuses on interannual variability in key climate indices The high‐resolution model shows improvements in ENSO, AMV, and in the depth structure of the AMOC. However, the ACC strength is worse</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018MS001495</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1381-384X</orcidid><orcidid>https://orcid.org/0000-0002-1462-686X</orcidid><orcidid>https://orcid.org/0000-0002-9627-2056</orcidid><orcidid>https://orcid.org/0000-0002-2612-9924</orcidid><orcidid>https://orcid.org/0000-0002-4894-898X</orcidid><orcidid>https://orcid.org/0000-0003-2328-6729</orcidid><orcidid>https://orcid.org/0000-0002-3910-5606</orcidid><orcidid>https://orcid.org/0000-0002-3960-9513</orcidid><orcidid>https://orcid.org/0000-0002-3566-4232</orcidid><orcidid>https://orcid.org/0000-0002-3467-018X</orcidid><orcidid>https://orcid.org/0000-0002-2958-6637</orcidid><orcidid>https://orcid.org/0000-0003-3145-2264</orcidid><orcidid>https://orcid.org/0000000323286729</orcidid><orcidid>https://orcid.org/0000000229586637</orcidid><orcidid>https://orcid.org/0000000226129924</orcidid><orcidid>https://orcid.org/000000023467018X</orcidid><orcidid>https://orcid.org/000000021462686X</orcidid><orcidid>https://orcid.org/0000000235664232</orcidid><orcidid>https://orcid.org/000000021381384X</orcidid><orcidid>https://orcid.org/0000000331452264</orcidid><orcidid>https://orcid.org/0000000296272056</orcidid><orcidid>https://orcid.org/0000000239105606</orcidid><orcidid>https://orcid.org/000000024894898X</orcidid><orcidid>https://orcid.org/0000000239609513</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-2466
ispartof Journal of advances in modeling earth systems, 2018-12, Vol.10 (12), p.3049-3075
issn 1942-2466
1942-2466
language eng
recordid cdi_osti_scitechconnect_1565753
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Antarctic Circumpolar Current
Atlantic Meridional Overturning Circulation (AMOC)
Atmosphere
Climate
climate modeling
Climate models
climate resolution
Climate variability
CMIP6
Computer models
El Nino
El Nino phenomena
Environmental modeling
ENVIRONMENTAL SCIENCES
Geophysics
GEOSCIENCES
Global climate
Interannual variability
Intercomparison
IPCC
MATHEMATICS AND COMPUTING
Ocean currents
Oceans
Physics
preindustrial
Reference levels
Resolution
Sciences of the Universe
Sea surface
Sea surface temperature
Sea surface temperature variability
Simulation
Surface temperature
Temperature variability
Variability
title Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preindustrial%20Control%20Simulations%20With%20HadGEM3%E2%80%90GC3.1%20for%20CMIP6&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Menary,%20Matthew%20B.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2018-12&rft.volume=10&rft.issue=12&rft.spage=3049&rft.epage=3075&rft.pages=3049-3075&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1029/2018MS001495&rft_dat=%3Cproquest_osti_%3E2167013629%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167013629&rft_id=info:pmid/&rfr_iscdi=true