Orbital spaces in the divide-expand-consolidate coupled cluster method
The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-04, Vol.144 (16) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 144 |
creator | Ettenhuber, Patrick Baudin, Pablo Kjærgaard, Thomas Jørgensen, Poul Kristensen, Kasper |
description | The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide–expand–consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1565471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1565471</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15654713</originalsourceid><addsrcrecordid>eNqNzL0KwjAUQOEgCtafdwjugZvapnYWi5uLe4nJlUZiU3pvxcfXwQdwOsvHmYlMw6FWlalhLjKAXKvagFmKFdEDAHSVF5loLuMtsI2SBuuQZOgldyh9eAWPCt-D7b1yqacUg7eM0qVpiOilixMxjvKJ3CW_EYu7jYTbX9di15yux7NKxKElFxhd99306LjVpSmLSu__Qh9w8zzu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orbital spaces in the divide-expand-consolidate coupled cluster method</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ettenhuber, Patrick ; Baudin, Pablo ; Kjærgaard, Thomas ; Jørgensen, Poul ; Kristensen, Kasper</creator><creatorcontrib>Ettenhuber, Patrick ; Baudin, Pablo ; Kjærgaard, Thomas ; Jørgensen, Poul ; Kristensen, Kasper ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide–expand–consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Physics</subject><ispartof>The Journal of chemical physics, 2016-04, Vol.144 (16)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000017233645X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1565471$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ettenhuber, Patrick</creatorcontrib><creatorcontrib>Baudin, Pablo</creatorcontrib><creatorcontrib>Kjærgaard, Thomas</creatorcontrib><creatorcontrib>Jørgensen, Poul</creatorcontrib><creatorcontrib>Kristensen, Kasper</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Orbital spaces in the divide-expand-consolidate coupled cluster method</title><title>The Journal of chemical physics</title><description>The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide–expand–consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm</description><subject>Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNzL0KwjAUQOEgCtafdwjugZvapnYWi5uLe4nJlUZiU3pvxcfXwQdwOsvHmYlMw6FWlalhLjKAXKvagFmKFdEDAHSVF5loLuMtsI2SBuuQZOgldyh9eAWPCt-D7b1yqacUg7eM0qVpiOilixMxjvKJ3CW_EYu7jYTbX9di15yux7NKxKElFxhd99306LjVpSmLSu__Qh9w8zzu</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Ettenhuber, Patrick</creator><creator>Baudin, Pablo</creator><creator>Kjærgaard, Thomas</creator><creator>Jørgensen, Poul</creator><creator>Kristensen, Kasper</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000017233645X</orcidid></search><sort><creationdate>20160428</creationdate><title>Orbital spaces in the divide-expand-consolidate coupled cluster method</title><author>Ettenhuber, Patrick ; Baudin, Pablo ; Kjærgaard, Thomas ; Jørgensen, Poul ; Kristensen, Kasper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15654713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ettenhuber, Patrick</creatorcontrib><creatorcontrib>Baudin, Pablo</creatorcontrib><creatorcontrib>Kjærgaard, Thomas</creatorcontrib><creatorcontrib>Jørgensen, Poul</creatorcontrib><creatorcontrib>Kristensen, Kasper</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ettenhuber, Patrick</au><au>Baudin, Pablo</au><au>Kjærgaard, Thomas</au><au>Jørgensen, Poul</au><au>Kristensen, Kasper</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital spaces in the divide-expand-consolidate coupled cluster method</atitle><jtitle>The Journal of chemical physics</jtitle><date>2016-04-28</date><risdate>2016</risdate><volume>144</volume><issue>16</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The theoretical foundation for solving coupled cluster singles and doubles (CCSD) amplitude equations to a desired precision in terms of independent fragment calculations using restricted local orbital spaces is reinvestigated with focus on the individual error sources. Four different error sources are identified theoretically and numerically and it is demonstrated that, for practical purposes, local orbital spaces for CCSD calculations can be identified from calculations at the MP2 level. The development establishes a solid theoretical foundation for local CCSD calculations for the independent fragments, and thus for divide–expand–consolidate coupled cluster calculations for large molecular systems with rigorous error control. Based on this theoretical foundation, we have developed an algorithm for determining the orbital spaces needed for obtaining the single fragment energies to a requested precision and numerically demonstrated the robustness and precision of this algorithm</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/000000017233645X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-04, Vol.144 (16) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1565471 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Physics |
title | Orbital spaces in the divide-expand-consolidate coupled cluster method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20spaces%20in%20the%20divide-expand-consolidate%20coupled%20cluster%20method&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ettenhuber,%20Patrick&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2016-04-28&rft.volume=144&rft.issue=16&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1565471%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |