Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling
Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency w...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2015-09, Vol.297 (C) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | Journal of computational physics |
container_volume | 297 |
creator | Jenkins, Thomas G. Held, Eric D. |
description | Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1565301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1565301</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15653013</originalsourceid><addsrcrecordid>eNqNjU0KwjAUhIMoWH_u8HBfSKpVuxbFA7iXkLy00TZPkxTt7W3RA7gavuFjZsQSwQueZjuxHbOE80ykRVGIKZuFcOOc7_PNPmH3A7WP2roS8B3RadTQyNJhpKrTnnTnZGMVmLq1GhRpDPCysQIvtSXj8dmiU12PHUQv1TD0tQx5MG2w5KDpi-FiwSZG1gGXv5yz1el4OZxTCtFeg7IRVaXIOVTxKvJtvuZi_Zf0AcbnS6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jenkins, Thomas G. ; Held, Eric D.</creator><creatorcontrib>Jenkins, Thomas G. ; Held, Eric D. ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Univ. of Wisconsin, Madison, WI (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; computational geometry ; computer science ; finite element methods ; magnetohydrodynamics ; physics ; pseudospectral methods ; radiofrequency waves ; ray tracing</subject><ispartof>Journal of computational physics, 2015-09, Vol.297 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000026457288X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1565301$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jenkins, Thomas G.</creatorcontrib><creatorcontrib>Held, Eric D.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><title>Journal of computational physics</title><description>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>computational geometry</subject><subject>computer science</subject><subject>finite element methods</subject><subject>magnetohydrodynamics</subject><subject>physics</subject><subject>pseudospectral methods</subject><subject>radiofrequency waves</subject><subject>ray tracing</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjU0KwjAUhIMoWH_u8HBfSKpVuxbFA7iXkLy00TZPkxTt7W3RA7gavuFjZsQSwQueZjuxHbOE80ykRVGIKZuFcOOc7_PNPmH3A7WP2roS8B3RadTQyNJhpKrTnnTnZGMVmLq1GhRpDPCysQIvtSXj8dmiU12PHUQv1TD0tQx5MG2w5KDpi-FiwSZG1gGXv5yz1el4OZxTCtFeg7IRVaXIOVTxKvJtvuZi_Zf0AcbnS6M</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Jenkins, Thomas G.</creator><creator>Held, Eric D.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000026457288X</orcidid></search><sort><creationdate>20150915</creationdate><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><author>Jenkins, Thomas G. ; Held, Eric D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15653013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>computational geometry</topic><topic>computer science</topic><topic>finite element methods</topic><topic>magnetohydrodynamics</topic><topic>physics</topic><topic>pseudospectral methods</topic><topic>radiofrequency waves</topic><topic>ray tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenkins, Thomas G.</creatorcontrib><creatorcontrib>Held, Eric D.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenkins, Thomas G.</au><au>Held, Eric D.</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</atitle><jtitle>Journal of computational physics</jtitle><date>2015-09-15</date><risdate>2015</risdate><volume>297</volume><issue>C</issue><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/000000026457288X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2015-09, Vol.297 (C) |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1565301 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY computational geometry computer science finite element methods magnetohydrodynamics physics pseudospectral methods radiofrequency waves ray tracing |
title | Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20extended%20magnetohydrodynamic%20fluid%20codes%20with%20radiofrequency%20ray%20tracing%20codes%20for%20fusion%20modeling&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Jenkins,%20Thomas%20G.&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-09-15&rft.volume=297&rft.issue=C&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/&rft_dat=%3Costi%3E1565301%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |