Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-09, Vol.297 (C)
Hauptverfasser: Jenkins, Thomas G., Held, Eric D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Journal of computational physics
container_volume 297
creator Jenkins, Thomas G.
Held, Eric D.
description Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1565301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1565301</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15653013</originalsourceid><addsrcrecordid>eNqNjU0KwjAUhIMoWH_u8HBfSKpVuxbFA7iXkLy00TZPkxTt7W3RA7gavuFjZsQSwQueZjuxHbOE80ykRVGIKZuFcOOc7_PNPmH3A7WP2roS8B3RadTQyNJhpKrTnnTnZGMVmLq1GhRpDPCysQIvtSXj8dmiU12PHUQv1TD0tQx5MG2w5KDpi-FiwSZG1gGXv5yz1el4OZxTCtFeg7IRVaXIOVTxKvJtvuZi_Zf0AcbnS6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jenkins, Thomas G. ; Held, Eric D.</creator><creatorcontrib>Jenkins, Thomas G. ; Held, Eric D. ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Univ. of Wisconsin, Madison, WI (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; computational geometry ; computer science ; finite element methods ; magnetohydrodynamics ; physics ; pseudospectral methods ; radiofrequency waves ; ray tracing</subject><ispartof>Journal of computational physics, 2015-09, Vol.297 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000026457288X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1565301$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jenkins, Thomas G.</creatorcontrib><creatorcontrib>Held, Eric D.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><title>Journal of computational physics</title><description>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>computational geometry</subject><subject>computer science</subject><subject>finite element methods</subject><subject>magnetohydrodynamics</subject><subject>physics</subject><subject>pseudospectral methods</subject><subject>radiofrequency waves</subject><subject>ray tracing</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjU0KwjAUhIMoWH_u8HBfSKpVuxbFA7iXkLy00TZPkxTt7W3RA7gavuFjZsQSwQueZjuxHbOE80ykRVGIKZuFcOOc7_PNPmH3A7WP2roS8B3RadTQyNJhpKrTnnTnZGMVmLq1GhRpDPCysQIvtSXj8dmiU12PHUQv1TD0tQx5MG2w5KDpi-FiwSZG1gGXv5yz1el4OZxTCtFeg7IRVaXIOVTxKvJtvuZi_Zf0AcbnS6M</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Jenkins, Thomas G.</creator><creator>Held, Eric D.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000026457288X</orcidid></search><sort><creationdate>20150915</creationdate><title>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</title><author>Jenkins, Thomas G. ; Held, Eric D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15653013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>computational geometry</topic><topic>computer science</topic><topic>finite element methods</topic><topic>magnetohydrodynamics</topic><topic>physics</topic><topic>pseudospectral methods</topic><topic>radiofrequency waves</topic><topic>ray tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenkins, Thomas G.</creatorcontrib><creatorcontrib>Held, Eric D.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenkins, Thomas G.</au><au>Held, Eric D.</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling</atitle><jtitle>Journal of computational physics</jtitle><date>2015-09-15</date><risdate>2015</risdate><volume>297</volume><issue>C</issue><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/000000026457288X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-09, Vol.297 (C)
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1565301
source ScienceDirect Journals (5 years ago - present)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
computational geometry
computer science
finite element methods
magnetohydrodynamics
physics
pseudospectral methods
radiofrequency waves
ray tracing
title Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20extended%20magnetohydrodynamic%20fluid%20codes%20with%20radiofrequency%20ray%20tracing%20codes%20for%20fusion%20modeling&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Jenkins,%20Thomas%20G.&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-09-15&rft.volume=297&rft.issue=C&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/&rft_dat=%3Costi%3E1565301%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true