Nuclear energy density optimization: Shell structure

Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2014-05, Vol.89 (5), Article 054314
Hauptverfasser: Kortelainen, M., McDonnell, J., Nazarewicz, W., Olsen, E., Reinhard, P.-G., Sarich, J., Schunck, N., Wild, S. M., Davesne, D., Erler, J., Pastore, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. C
container_volume 89
creator Kortelainen, M.
McDonnell, J.
Nazarewicz, W.
Olsen, E.
Reinhard, P.-G.
Sarich, J.
Schunck, N.
Wild, S. M.
Davesne, D.
Erler, J.
Pastore, A.
description Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.
doi_str_mv 10.1103/PhysRevC.89.054314
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1565207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_in2p3_00999734v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e3cc24058e19c82e9e6ab0ee610ec73865686f62f7ee2bfb1ab5c7f8c1f9b44c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMoWB9_wNXgVqbmPYm7UtQKRcUHuAuZ-MWJTGdKkhbGX29l1Lu5m3Pv4iB0RvCUEMwuH5shPcF2PlV6igVnhO-hCcFKl1zjt300wULIkirCDtFRSp94F8bkBPH7jWvBxgI6iB9D8Q5dCnko-nUOq_Blc-i7q-K5gbYtUo4blzcRTtCBt22C098-Rq831y_zRbl8uL2bz5alY4LnEphzlGOhgGinKGiQtsYAkmBwFVNSSCW9pL4CoLWvia2Fq7xyxOuac8eO0fn426ccTHIhg2tc33XgsiFCCoqrHXQxQo1tzTqGlY2D6W0wi9nShI6umcFYa10xviU7mo60i31KEfz_hGDzo9L8qTRKm1El-waLkGiR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear energy density optimization: Shell structure</title><source>American Physical Society Journals</source><creator>Kortelainen, M. ; McDonnell, J. ; Nazarewicz, W. ; Olsen, E. ; Reinhard, P.-G. ; Sarich, J. ; Schunck, N. ; Wild, S. M. ; Davesne, D. ; Erler, J. ; Pastore, A.</creator><creatorcontrib>Kortelainen, M. ; McDonnell, J. ; Nazarewicz, W. ; Olsen, E. ; Reinhard, P.-G. ; Sarich, J. ; Schunck, N. ; Wild, S. M. ; Davesne, D. ; Erler, J. ; Pastore, A. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Univ. of Tennessee, Knoxville, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.</description><identifier>ISSN: 0556-2813</identifier><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 1089-490X</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.89.054314</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS ; Nuclear Theory ; Physics</subject><ispartof>Physical review. C, 2014-05, Vol.89 (5), Article 054314</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e3cc24058e19c82e9e6ab0ee610ec73865686f62f7ee2bfb1ab5c7f8c1f9b44c3</citedby><cites>FETCH-LOGICAL-c354t-e3cc24058e19c82e9e6ab0ee610ec73865686f62f7ee2bfb1ab5c7f8c1f9b44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://in2p3.hal.science/in2p3-00999734$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1565207$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kortelainen, M.</creatorcontrib><creatorcontrib>McDonnell, J.</creatorcontrib><creatorcontrib>Nazarewicz, W.</creatorcontrib><creatorcontrib>Olsen, E.</creatorcontrib><creatorcontrib>Reinhard, P.-G.</creatorcontrib><creatorcontrib>Sarich, J.</creatorcontrib><creatorcontrib>Schunck, N.</creatorcontrib><creatorcontrib>Wild, S. M.</creatorcontrib><creatorcontrib>Davesne, D.</creatorcontrib><creatorcontrib>Erler, J.</creatorcontrib><creatorcontrib>Pastore, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Nuclear energy density optimization: Shell structure</title><title>Physical review. C</title><description>Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.</description><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Nuclear Theory</subject><subject>Physics</subject><issn>0556-2813</issn><issn>2469-9985</issn><issn>1089-490X</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMoWB9_wNXgVqbmPYm7UtQKRcUHuAuZ-MWJTGdKkhbGX29l1Lu5m3Pv4iB0RvCUEMwuH5shPcF2PlV6igVnhO-hCcFKl1zjt300wULIkirCDtFRSp94F8bkBPH7jWvBxgI6iB9D8Q5dCnko-nUOq_Blc-i7q-K5gbYtUo4blzcRTtCBt22C098-Rq831y_zRbl8uL2bz5alY4LnEphzlGOhgGinKGiQtsYAkmBwFVNSSCW9pL4CoLWvia2Fq7xyxOuac8eO0fn426ccTHIhg2tc33XgsiFCCoqrHXQxQo1tzTqGlY2D6W0wi9nShI6umcFYa10xviU7mo60i31KEfz_hGDzo9L8qTRKm1El-waLkGiR</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Kortelainen, M.</creator><creator>McDonnell, J.</creator><creator>Nazarewicz, W.</creator><creator>Olsen, E.</creator><creator>Reinhard, P.-G.</creator><creator>Sarich, J.</creator><creator>Schunck, N.</creator><creator>Wild, S. M.</creator><creator>Davesne, D.</creator><creator>Erler, J.</creator><creator>Pastore, A.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20140515</creationdate><title>Nuclear energy density optimization: Shell structure</title><author>Kortelainen, M. ; McDonnell, J. ; Nazarewicz, W. ; Olsen, E. ; Reinhard, P.-G. ; Sarich, J. ; Schunck, N. ; Wild, S. M. ; Davesne, D. ; Erler, J. ; Pastore, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e3cc24058e19c82e9e6ab0ee610ec73865686f62f7ee2bfb1ab5c7f8c1f9b44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Nuclear Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kortelainen, M.</creatorcontrib><creatorcontrib>McDonnell, J.</creatorcontrib><creatorcontrib>Nazarewicz, W.</creatorcontrib><creatorcontrib>Olsen, E.</creatorcontrib><creatorcontrib>Reinhard, P.-G.</creatorcontrib><creatorcontrib>Sarich, J.</creatorcontrib><creatorcontrib>Schunck, N.</creatorcontrib><creatorcontrib>Wild, S. M.</creatorcontrib><creatorcontrib>Davesne, D.</creatorcontrib><creatorcontrib>Erler, J.</creatorcontrib><creatorcontrib>Pastore, A.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Tennessee, Knoxville, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kortelainen, M.</au><au>McDonnell, J.</au><au>Nazarewicz, W.</au><au>Olsen, E.</au><au>Reinhard, P.-G.</au><au>Sarich, J.</au><au>Schunck, N.</au><au>Wild, S. M.</au><au>Davesne, D.</au><au>Erler, J.</au><au>Pastore, A.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Univ. of Tennessee, Knoxville, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear energy density optimization: Shell structure</atitle><jtitle>Physical review. C</jtitle><date>2014-05-15</date><risdate>2014</risdate><volume>89</volume><issue>5</issue><artnum>054314</artnum><issn>0556-2813</issn><issn>2469-9985</issn><eissn>1089-490X</eissn><eissn>2469-9993</eissn><abstract>Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevC.89.054314</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0556-2813
ispartof Physical review. C, 2014-05, Vol.89 (5), Article 054314
issn 0556-2813
2469-9985
1089-490X
2469-9993
language eng
recordid cdi_osti_scitechconnect_1565207
source American Physical Society Journals
subjects NUCLEAR PHYSICS AND RADIATION PHYSICS
Nuclear Theory
Physics
title Nuclear energy density optimization: Shell structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20energy%20density%20optimization:%20Shell%20structure&rft.jtitle=Physical%20review.%20C&rft.au=Kortelainen,%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2014-05-15&rft.volume=89&rft.issue=5&rft.artnum=054314&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.89.054314&rft_dat=%3Chal_osti_%3Eoai_HAL_in2p3_00999734v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true