Liquid phase reforming of woody biomass to hydrogen
This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalyst...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-01, Vol.39 (1), p.137-149 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | EMERSON, Sean C TIANLI ZHU DAVIS, Timothy D PELES, Amra YING SHE WILLIGAN, Rhonda R VANDERSPURT, Thomas H SWANSON, Michael LAUDAL, Daniel A |
description | This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly PtaRe, were shown by atomistic modeling to be more selective toward breaking CaC bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking CaO bonds, favoring the production of methane. The results showed that at a constant wood concentration, increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen. The amount of wood converted to gas was lower due to increased production of undesirable organic acids from the wood at higher base concentrations. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. |
doi_str_mv | 10.1016/j.ijhydene.2013.09.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1565137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506386998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-beb59cf7822ff56dd195e2704920854b31ba29aaa3e3520e09c45d70fee5de9c3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoenjF4opFLqxO5IsW1qW0BcEumnXQpZHiYxtJZZDyd_XJmmZxWzOncscQu4oZBRo8dRkvtkcauwxY0B5BiqDnJ6RBZWlSnkuy3OyAF5AyqlSl-QqxgaAlpCrBeErv9v7OtluTMRkQBeGzvfrJLjkJ4T6kFQ-dCbGZAzJVDKENfY35MKZNuLtaV-T79eXr-V7uvp8-1g-r1LLJRvTCiuhrCslY86Joq6pEsjmWgZS5BWnlWHKGMORCwYIyuaiLsEhihqV5dfk_ng3xNHraP2IdmND36MdNRWFoLycoMcjtB3Cbo9x1J2PFtvW9Bj2ceKg4LJQSk5ocUTtEGKcftXbwXdmOGgKelapG_2nUs8qNSg9qZyCD6cOE61p3WB66-N_mkmQfJ5f-nB2VA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506386998</pqid></control><display><type>article</type><title>Liquid phase reforming of woody biomass to hydrogen</title><source>Elsevier ScienceDirect Journals</source><creator>EMERSON, Sean C ; TIANLI ZHU ; DAVIS, Timothy D ; PELES, Amra ; YING SHE ; WILLIGAN, Rhonda R ; VANDERSPURT, Thomas H ; SWANSON, Michael ; LAUDAL, Daniel A</creator><creatorcontrib>EMERSON, Sean C ; TIANLI ZHU ; DAVIS, Timothy D ; PELES, Amra ; YING SHE ; WILLIGAN, Rhonda R ; VANDERSPURT, Thomas H ; SWANSON, Michael ; LAUDAL, Daniel A ; United Technologies Corporation, Farmington, CT (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly PtaRe, were shown by atomistic modeling to be more selective toward breaking CaC bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking CaO bonds, favoring the production of methane. The results showed that at a constant wood concentration, increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen. The amount of wood converted to gas was lower due to increased production of undesirable organic acids from the wood at higher base concentrations. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.09.041</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Biomass ; Catalysts ; Chemistry ; Electrochemistry ; Energy ; Energy & Fuels ; Exact sciences and technology ; Fuels ; Hydrogen ; Liquid phases ; Nickel ; Organic acids ; Reforming ; Selectivity ; Wood</subject><ispartof>International journal of hydrogen energy, 2014-01, Vol.39 (1), p.137-149</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-beb59cf7822ff56dd195e2704920854b31ba29aaa3e3520e09c45d70fee5de9c3</citedby><cites>FETCH-LOGICAL-c382t-beb59cf7822ff56dd195e2704920854b31ba29aaa3e3520e09c45d70fee5de9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28083838$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1565137$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>EMERSON, Sean C</creatorcontrib><creatorcontrib>TIANLI ZHU</creatorcontrib><creatorcontrib>DAVIS, Timothy D</creatorcontrib><creatorcontrib>PELES, Amra</creatorcontrib><creatorcontrib>YING SHE</creatorcontrib><creatorcontrib>WILLIGAN, Rhonda R</creatorcontrib><creatorcontrib>VANDERSPURT, Thomas H</creatorcontrib><creatorcontrib>SWANSON, Michael</creatorcontrib><creatorcontrib>LAUDAL, Daniel A</creatorcontrib><creatorcontrib>United Technologies Corporation, Farmington, CT (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Liquid phase reforming of woody biomass to hydrogen</title><title>International journal of hydrogen energy</title><description>This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly PtaRe, were shown by atomistic modeling to be more selective toward breaking CaC bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking CaO bonds, favoring the production of methane. The results showed that at a constant wood concentration, increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen. The amount of wood converted to gas was lower due to increased production of undesirable organic acids from the wood at higher base concentrations. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy & Fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Liquid phases</subject><subject>Nickel</subject><subject>Organic acids</subject><subject>Reforming</subject><subject>Selectivity</subject><subject>Wood</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoenjF4opFLqxO5IsW1qW0BcEumnXQpZHiYxtJZZDyd_XJmmZxWzOncscQu4oZBRo8dRkvtkcauwxY0B5BiqDnJ6RBZWlSnkuy3OyAF5AyqlSl-QqxgaAlpCrBeErv9v7OtluTMRkQBeGzvfrJLjkJ4T6kFQ-dCbGZAzJVDKENfY35MKZNuLtaV-T79eXr-V7uvp8-1g-r1LLJRvTCiuhrCslY86Joq6pEsjmWgZS5BWnlWHKGMORCwYIyuaiLsEhihqV5dfk_ng3xNHraP2IdmND36MdNRWFoLycoMcjtB3Cbo9x1J2PFtvW9Bj2ceKg4LJQSk5ocUTtEGKcftXbwXdmOGgKelapG_2nUs8qNSg9qZyCD6cOE61p3WB66-N_mkmQfJ5f-nB2VA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>EMERSON, Sean C</creator><creator>TIANLI ZHU</creator><creator>DAVIS, Timothy D</creator><creator>PELES, Amra</creator><creator>YING SHE</creator><creator>WILLIGAN, Rhonda R</creator><creator>VANDERSPURT, Thomas H</creator><creator>SWANSON, Michael</creator><creator>LAUDAL, Daniel A</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>Liquid phase reforming of woody biomass to hydrogen</title><author>EMERSON, Sean C ; TIANLI ZHU ; DAVIS, Timothy D ; PELES, Amra ; YING SHE ; WILLIGAN, Rhonda R ; VANDERSPURT, Thomas H ; SWANSON, Michael ; LAUDAL, Daniel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-beb59cf7822ff56dd195e2704920854b31ba29aaa3e3520e09c45d70fee5de9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy & Fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Liquid phases</topic><topic>Nickel</topic><topic>Organic acids</topic><topic>Reforming</topic><topic>Selectivity</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EMERSON, Sean C</creatorcontrib><creatorcontrib>TIANLI ZHU</creatorcontrib><creatorcontrib>DAVIS, Timothy D</creatorcontrib><creatorcontrib>PELES, Amra</creatorcontrib><creatorcontrib>YING SHE</creatorcontrib><creatorcontrib>WILLIGAN, Rhonda R</creatorcontrib><creatorcontrib>VANDERSPURT, Thomas H</creatorcontrib><creatorcontrib>SWANSON, Michael</creatorcontrib><creatorcontrib>LAUDAL, Daniel A</creatorcontrib><creatorcontrib>United Technologies Corporation, Farmington, CT (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EMERSON, Sean C</au><au>TIANLI ZHU</au><au>DAVIS, Timothy D</au><au>PELES, Amra</au><au>YING SHE</au><au>WILLIGAN, Rhonda R</au><au>VANDERSPURT, Thomas H</au><au>SWANSON, Michael</au><au>LAUDAL, Daniel A</au><aucorp>United Technologies Corporation, Farmington, CT (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid phase reforming of woody biomass to hydrogen</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>39</volume><issue>1</issue><spage>137</spage><epage>149</epage><pages>137-149</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>This work concentrates on the production of H2 directly from raw biomass through liquid phase reforming in the presence of a liquid base and a solid catalyst. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly PtaRe, were shown by atomistic modeling to be more selective toward breaking CaC bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking CaO bonds, favoring the production of methane. The results showed that at a constant wood concentration, increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen. The amount of wood converted to gas was lower due to increased production of undesirable organic acids from the wood at higher base concentrations. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.ijhydene.2013.09.041</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-01, Vol.39 (1), p.137-149 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_osti_scitechconnect_1565137 |
source | Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Biomass Catalysts Chemistry Electrochemistry Energy Energy & Fuels Exact sciences and technology Fuels Hydrogen Liquid phases Nickel Organic acids Reforming Selectivity Wood |
title | Liquid phase reforming of woody biomass to hydrogen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20phase%20reforming%20of%20woody%20biomass%20to%20hydrogen&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=EMERSON,%20Sean%20C&rft.aucorp=United%20Technologies%20Corporation,%20Farmington,%20CT%20(United%20States)&rft.date=2014-01-01&rft.volume=39&rft.issue=1&rft.spage=137&rft.epage=149&rft.pages=137-149&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.09.041&rft_dat=%3Cproquest_osti_%3E1506386998%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506386998&rft_id=info:pmid/&rfr_iscdi=true |