Dynamic overset CFD simulations of wind turbine aerodynamics

Simulations of the National Renewable Energy Laboratory (NREL) phase VI wind turbine using dynamic overset grid technology are presented. The simulations are performed in an inertial frame of reference with the rotor consisting of the blades and hub. The geometries of the tower and nacelle are appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2012, Vol.37 (1), p.285-298
Hauptverfasser: Li, Yuwei, Paik, Kwang-Jun, Xing, Tao, Carrica, Pablo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 1
container_start_page 285
container_title Renewable energy
container_volume 37
creator Li, Yuwei
Paik, Kwang-Jun
Xing, Tao
Carrica, Pablo M.
description Simulations of the National Renewable Energy Laboratory (NREL) phase VI wind turbine using dynamic overset grid technology are presented. The simulations are performed in an inertial frame of reference with the rotor consisting of the blades and hub. The geometries of the tower and nacelle are approximate but included in the computation. Computations of the effect of wind speed (5, 10, 15 and 25 m/s) at a fixed blade pitch angle of 3° with constant rotational speed using unsteady Reynolds-Averaged Navier–Stokes (RANS) and Detached Eddy Simulation (DES) turbulence models, both showing little difference in the averaged forces and moments. However, significant improvements in the transient response are seen when using DES. The effect of angle of attack is evaluated by dynamically changing the pitch from −15° to 40° at constant wind speed of 15 m/s. Extensive comparison against experimental results, including total power and thrust, sectional performance of normal force coefficient and local pressure coefficient, shows consistently good predictions. The methodology shows a promise for more complex computations including active turbine control by varying the pitch angle and fluid-structure interaction. ► We present dynamic overset RANS and DES simulations for NREL phase VI wind turbine. ► The predictions match the experimental data consistently well. ► DES predicts fluctuations with frequencies similar to the experimental measurements. ► At the level of grid resolution, the frequency amplitude is under-predicted.
doi_str_mv 10.1016/j.renene.2011.06.029
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148111003223</els_id><sourcerecordid>888117490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-73fa3d015efd8df4923c90a578a643b882fa061c8f7e465da97e38964f7aaeed3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMoeK3-A8FBEN3MmGQy-QAR5NaqUHChXYfT5ERzmZvUZG6l_94MU1yWLLJ53vPxHEJeMjowyuT7w1AwtTdwythA5UC5eUR2TCvTU6n5Y7KjRtKeCc2ekme1Hihlk1ZiRz6c3yU4RtflWywVl25_cd7VeDzNsMScapdD9zcm3y2nch0TdoAl-y1Tn5MnAeaKL-7_M3J18fnn_mt_-f3Lt_2ny96JiS-9GgOMvnXE4LUPwvDRGQqT0iDFeK01D0AlczooFHLyYBSO2kgRFACiH8_I661urku01cUF3W-XU0K3WDZJoblo0NsNuin5zwnrYo-xOpxnSJhP1WqtGVPC0Ea-e5BkUjHBuJJjQ8WGupJrLRjsTYlHKHeWUbu6twe7ubere0ulbe5b7M19B6gO5lAguVj_Z7lQ06TEOvOrjQuQLfwqjbn60QpN7T7SGK4a8XEjsPm9jVjW9TE59LGs2_scHx7lHweYo98</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671412763</pqid></control><display><type>article</type><title>Dynamic overset CFD simulations of wind turbine aerodynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Yuwei ; Paik, Kwang-Jun ; Xing, Tao ; Carrica, Pablo M.</creator><creatorcontrib>Li, Yuwei ; Paik, Kwang-Jun ; Xing, Tao ; Carrica, Pablo M. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>Simulations of the National Renewable Energy Laboratory (NREL) phase VI wind turbine using dynamic overset grid technology are presented. The simulations are performed in an inertial frame of reference with the rotor consisting of the blades and hub. The geometries of the tower and nacelle are approximate but included in the computation. Computations of the effect of wind speed (5, 10, 15 and 25 m/s) at a fixed blade pitch angle of 3° with constant rotational speed using unsteady Reynolds-Averaged Navier–Stokes (RANS) and Detached Eddy Simulation (DES) turbulence models, both showing little difference in the averaged forces and moments. However, significant improvements in the transient response are seen when using DES. The effect of angle of attack is evaluated by dynamically changing the pitch from −15° to 40° at constant wind speed of 15 m/s. Extensive comparison against experimental results, including total power and thrust, sectional performance of normal force coefficient and local pressure coefficient, shows consistently good predictions. The methodology shows a promise for more complex computations including active turbine control by varying the pitch angle and fluid-structure interaction. ► We present dynamic overset RANS and DES simulations for NREL phase VI wind turbine. ► The predictions match the experimental data consistently well. ► DES predicts fluctuations with frequencies similar to the experimental measurements. ► At the level of grid resolution, the frequency amplitude is under-predicted.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2011.06.029</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>aerodynamics ; Applied sciences ; Coefficients ; Computation ; Computational fluid dynamics ; Computer simulation ; Dynamics ; Energy ; Energy &amp; Fuels ; Exact sciences and technology ; Natural energy ; Navier-Stokes equations ; Overset grids ; Pitch angle ; prediction ; Renewable energy ; renewable energy sources ; Rotor flow ; Science &amp; Technology - Other Topics ; turbulent flow ; Wind energy ; wind speed ; Wind turbine aerodynamics ; Wind turbines</subject><ispartof>Renewable energy, 2012, Vol.37 (1), p.285-298</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-73fa3d015efd8df4923c90a578a643b882fa061c8f7e465da97e38964f7aaeed3</citedby><cites>FETCH-LOGICAL-c452t-73fa3d015efd8df4923c90a578a643b882fa061c8f7e465da97e38964f7aaeed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148111003223$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24755744$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564824$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuwei</creatorcontrib><creatorcontrib>Paik, Kwang-Jun</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Dynamic overset CFD simulations of wind turbine aerodynamics</title><title>Renewable energy</title><description>Simulations of the National Renewable Energy Laboratory (NREL) phase VI wind turbine using dynamic overset grid technology are presented. The simulations are performed in an inertial frame of reference with the rotor consisting of the blades and hub. The geometries of the tower and nacelle are approximate but included in the computation. Computations of the effect of wind speed (5, 10, 15 and 25 m/s) at a fixed blade pitch angle of 3° with constant rotational speed using unsteady Reynolds-Averaged Navier–Stokes (RANS) and Detached Eddy Simulation (DES) turbulence models, both showing little difference in the averaged forces and moments. However, significant improvements in the transient response are seen when using DES. The effect of angle of attack is evaluated by dynamically changing the pitch from −15° to 40° at constant wind speed of 15 m/s. Extensive comparison against experimental results, including total power and thrust, sectional performance of normal force coefficient and local pressure coefficient, shows consistently good predictions. The methodology shows a promise for more complex computations including active turbine control by varying the pitch angle and fluid-structure interaction. ► We present dynamic overset RANS and DES simulations for NREL phase VI wind turbine. ► The predictions match the experimental data consistently well. ► DES predicts fluctuations with frequencies similar to the experimental measurements. ► At the level of grid resolution, the frequency amplitude is under-predicted.</description><subject>aerodynamics</subject><subject>Applied sciences</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Energy &amp; Fuels</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Navier-Stokes equations</subject><subject>Overset grids</subject><subject>Pitch angle</subject><subject>prediction</subject><subject>Renewable energy</subject><subject>renewable energy sources</subject><subject>Rotor flow</subject><subject>Science &amp; Technology - Other Topics</subject><subject>turbulent flow</subject><subject>Wind energy</subject><subject>wind speed</subject><subject>Wind turbine aerodynamics</subject><subject>Wind turbines</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rFTEUhoMoeK3-A8FBEN3MmGQy-QAR5NaqUHChXYfT5ERzmZvUZG6l_94MU1yWLLJ53vPxHEJeMjowyuT7w1AwtTdwythA5UC5eUR2TCvTU6n5Y7KjRtKeCc2ekme1Hihlk1ZiRz6c3yU4RtflWywVl25_cd7VeDzNsMScapdD9zcm3y2nch0TdoAl-y1Tn5MnAeaKL-7_M3J18fnn_mt_-f3Lt_2ny96JiS-9GgOMvnXE4LUPwvDRGQqT0iDFeK01D0AlczooFHLyYBSO2kgRFACiH8_I661urku01cUF3W-XU0K3WDZJoblo0NsNuin5zwnrYo-xOpxnSJhP1WqtGVPC0Ea-e5BkUjHBuJJjQ8WGupJrLRjsTYlHKHeWUbu6twe7ubere0ulbe5b7M19B6gO5lAguVj_Z7lQ06TEOvOrjQuQLfwqjbn60QpN7T7SGK4a8XEjsPm9jVjW9TE59LGs2_scHx7lHweYo98</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Li, Yuwei</creator><creator>Paik, Kwang-Jun</creator><creator>Xing, Tao</creator><creator>Carrica, Pablo M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>2012</creationdate><title>Dynamic overset CFD simulations of wind turbine aerodynamics</title><author>Li, Yuwei ; Paik, Kwang-Jun ; Xing, Tao ; Carrica, Pablo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-73fa3d015efd8df4923c90a578a643b882fa061c8f7e465da97e38964f7aaeed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>aerodynamics</topic><topic>Applied sciences</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Energy &amp; Fuels</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Navier-Stokes equations</topic><topic>Overset grids</topic><topic>Pitch angle</topic><topic>prediction</topic><topic>Renewable energy</topic><topic>renewable energy sources</topic><topic>Rotor flow</topic><topic>Science &amp; Technology - Other Topics</topic><topic>turbulent flow</topic><topic>Wind energy</topic><topic>wind speed</topic><topic>Wind turbine aerodynamics</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuwei</creatorcontrib><creatorcontrib>Paik, Kwang-Jun</creatorcontrib><creatorcontrib>Xing, Tao</creatorcontrib><creatorcontrib>Carrica, Pablo M.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuwei</au><au>Paik, Kwang-Jun</au><au>Xing, Tao</au><au>Carrica, Pablo M.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic overset CFD simulations of wind turbine aerodynamics</atitle><jtitle>Renewable energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>285</spage><epage>298</epage><pages>285-298</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Simulations of the National Renewable Energy Laboratory (NREL) phase VI wind turbine using dynamic overset grid technology are presented. The simulations are performed in an inertial frame of reference with the rotor consisting of the blades and hub. The geometries of the tower and nacelle are approximate but included in the computation. Computations of the effect of wind speed (5, 10, 15 and 25 m/s) at a fixed blade pitch angle of 3° with constant rotational speed using unsteady Reynolds-Averaged Navier–Stokes (RANS) and Detached Eddy Simulation (DES) turbulence models, both showing little difference in the averaged forces and moments. However, significant improvements in the transient response are seen when using DES. The effect of angle of attack is evaluated by dynamically changing the pitch from −15° to 40° at constant wind speed of 15 m/s. Extensive comparison against experimental results, including total power and thrust, sectional performance of normal force coefficient and local pressure coefficient, shows consistently good predictions. The methodology shows a promise for more complex computations including active turbine control by varying the pitch angle and fluid-structure interaction. ► We present dynamic overset RANS and DES simulations for NREL phase VI wind turbine. ► The predictions match the experimental data consistently well. ► DES predicts fluctuations with frequencies similar to the experimental measurements. ► At the level of grid resolution, the frequency amplitude is under-predicted.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2011.06.029</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2012, Vol.37 (1), p.285-298
issn 0960-1481
1879-0682
language eng
recordid cdi_osti_scitechconnect_1564824
source Elsevier ScienceDirect Journals Complete
subjects aerodynamics
Applied sciences
Coefficients
Computation
Computational fluid dynamics
Computer simulation
Dynamics
Energy
Energy & Fuels
Exact sciences and technology
Natural energy
Navier-Stokes equations
Overset grids
Pitch angle
prediction
Renewable energy
renewable energy sources
Rotor flow
Science & Technology - Other Topics
turbulent flow
Wind energy
wind speed
Wind turbine aerodynamics
Wind turbines
title Dynamic overset CFD simulations of wind turbine aerodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20overset%20CFD%20simulations%20of%20wind%20turbine%20aerodynamics&rft.jtitle=Renewable%20energy&rft.au=Li,%20Yuwei&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Oak%20Ridge%20Leadership%20Computing%20Facility%20(OLCF)&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=285&rft.epage=298&rft.pages=285-298&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2011.06.029&rft_dat=%3Cproquest_osti_%3E888117490%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671412763&rft_id=info:pmid/&rft_els_id=S0960148111003223&rfr_iscdi=true