p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES
(ProQuest: ... denotes formulae/symbols omitted.)The authors present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referre...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2011-01, Vol.33 (3-4), p.1103-1133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1133 |
---|---|
container_issue | 3-4 |
container_start_page | 1103 |
container_title | SIAM journal on scientific computing |
container_volume | 33 |
creator | BURSTEDDE, Carsten WILCOX, Lucas C GHATTAS, Omar |
description | (ProQuest: ... denotes formulae/symbols omitted.)The authors present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By distributing the union of octants from all octrees in parallel, they combine the high scalability proven previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an adapted octree. A key concept of their approach is an encoding scheme of the interoctree connectivity that permits arbitrary relative orientations between octrees. They demonstrate the parallel scalability of p4est on its own and in combination with two geophysics codes. Using p4est they generate and adapt multioctree meshes with up to 5.13 x ... octants on as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per million octants per process. |
doi_str_mv | 10.1137/100791634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411558311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-17b1124093bff82233ba1b582dfc6478f747ffe3e2b3344bed516a05754b7c733</originalsourceid><addsrcrecordid>eNpFkctOwzAQRSMEEs8Ff2AhIcQi4PEjjtmF4tJKaYOSwNZKjC2CSlLidMHfk6qorGYWZ85o5gbBJeA7ACruAWMhIaLsIDgBLHkoQIrDbR-xMCaCHwen3n9iDBGT5CR4WzPrhwdUTJI0eUwVStLnLJ-Xs0WBplmOXpI8SVOVouQpeSnnbwotVDFDuZrOl2qhliXKlltQFWWBsinKJmWuVHEeHLlq5e3FXz0LXqeqnMzCNHuej6tCwwCGEEQNQBiWtHYuJoTSuoKax-TdmYiJ2AkmnLPUkppSxmr7ziGqMBec1cIISs-Cq52380OjvWkGaz5M17bWDBr46JDRCN3soHXffW_Gc_VX441drarWdhuv5fiMGAOBf92e_Ow2fTteoOMYYx7xmI_Q7Q4yfed9b51e981X1f9owHobgt6HMLLXf8LKm2rl-qo1jd8PECaIJELSX6IXe6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880056585</pqid></control><display><type>article</type><title>p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES</title><source>SIAM Journals Online</source><creator>BURSTEDDE, Carsten ; WILCOX, Lucas C ; GHATTAS, Omar</creator><creatorcontrib>BURSTEDDE, Carsten ; WILCOX, Lucas C ; GHATTAS, Omar ; Univ. of Texas, Austin, TX (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>(ProQuest: ... denotes formulae/symbols omitted.)The authors present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By distributing the union of octants from all octrees in parallel, they combine the high scalability proven previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an adapted octree. A key concept of their approach is an encoding scheme of the interoctree connectivity that permits arbitrary relative orientations between octrees. They demonstrate the parallel scalability of p4est on its own and in combination with two geophysics codes. Using p4est they generate and adapt multioctree meshes with up to 5.13 x ... octants on as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per million octants per process.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/100791634</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Adaptive algorithms ; Algorithms ; Coarsening ; Combinatorics ; Combinatorics. Ordered structures ; Computation ; Designs and configurations ; Exact sciences and technology ; Forests ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical analysis ; Numerical analysis. Scientific computation ; Octrees ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Partitioning ; Sciences and techniques of general use ; Studies ; Symbols</subject><ispartof>SIAM journal on scientific computing, 2011-01, Vol.33 (3-4), p.1103-1133</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Society for Industrial and Applied Mathematics 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-17b1124093bff82233ba1b582dfc6478f747ffe3e2b3344bed516a05754b7c733</citedby><cites>FETCH-LOGICAL-c411t-17b1124093bff82233ba1b582dfc6478f747ffe3e2b3344bed516a05754b7c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24729279$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564796$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>BURSTEDDE, Carsten</creatorcontrib><creatorcontrib>WILCOX, Lucas C</creatorcontrib><creatorcontrib>GHATTAS, Omar</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES</title><title>SIAM journal on scientific computing</title><description>(ProQuest: ... denotes formulae/symbols omitted.)The authors present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By distributing the union of octants from all octrees in parallel, they combine the high scalability proven previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an adapted octree. A key concept of their approach is an encoding scheme of the interoctree connectivity that permits arbitrary relative orientations between octrees. They demonstrate the parallel scalability of p4est on its own and in combination with two geophysics codes. Using p4est they generate and adapt multioctree meshes with up to 5.13 x ... octants on as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per million octants per process.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Coarsening</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computation</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Octrees</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Partitioning</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Symbols</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkctOwzAQRSMEEs8Ff2AhIcQi4PEjjtmF4tJKaYOSwNZKjC2CSlLidMHfk6qorGYWZ85o5gbBJeA7ACruAWMhIaLsIDgBLHkoQIrDbR-xMCaCHwen3n9iDBGT5CR4WzPrhwdUTJI0eUwVStLnLJ-Xs0WBplmOXpI8SVOVouQpeSnnbwotVDFDuZrOl2qhliXKlltQFWWBsinKJmWuVHEeHLlq5e3FXz0LXqeqnMzCNHuej6tCwwCGEEQNQBiWtHYuJoTSuoKax-TdmYiJ2AkmnLPUkppSxmr7ziGqMBec1cIISs-Cq52380OjvWkGaz5M17bWDBr46JDRCN3soHXffW_Gc_VX441drarWdhuv5fiMGAOBf92e_Ow2fTteoOMYYx7xmI_Q7Q4yfed9b51e981X1f9owHobgt6HMLLXf8LKm2rl-qo1jd8PECaIJELSX6IXe6w</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>BURSTEDDE, Carsten</creator><creator>WILCOX, Lucas C</creator><creator>GHATTAS, Omar</creator><general>Society for Industrial and Applied Mathematics</general><general>SIAM</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES</title><author>BURSTEDDE, Carsten ; WILCOX, Lucas C ; GHATTAS, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-17b1124093bff82233ba1b582dfc6478f747ffe3e2b3344bed516a05754b7c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Coarsening</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computation</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Octrees</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Partitioning</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURSTEDDE, Carsten</creatorcontrib><creatorcontrib>WILCOX, Lucas C</creatorcontrib><creatorcontrib>GHATTAS, Omar</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURSTEDDE, Carsten</au><au>WILCOX, Lucas C</au><au>GHATTAS, Omar</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>33</volume><issue>3-4</issue><spage>1103</spage><epage>1133</epage><pages>1103-1133</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>(ProQuest: ... denotes formulae/symbols omitted.)The authors present scalable algorithms for parallel adaptive mesh refinement and coarsening (AMR), partitioning, and 2:1 balancing on computational domains composed of multiple connected two-dimensional quadtrees or three-dimensional octrees, referred to as a forest of octrees. By distributing the union of octants from all octrees in parallel, they combine the high scalability proven previously for adaptive single-octree algorithms with the geometric flexibility that can be achieved by arbitrarily connected hexahedral macromeshes, in which each macroelement is the root of an adapted octree. A key concept of their approach is an encoding scheme of the interoctree connectivity that permits arbitrary relative orientations between octrees. They demonstrate the parallel scalability of p4est on its own and in combination with two geophysics codes. Using p4est they generate and adapt multioctree meshes with up to 5.13 x ... octants on as many as 220,320 CPU cores and execute the 2:1 balance algorithm in less than 10 seconds per million octants per process.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100791634</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2011-01, Vol.33 (3-4), p.1103-1133 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_osti_scitechconnect_1564796 |
source | SIAM Journals Online |
subjects | Adaptive algorithms Algorithms Coarsening Combinatorics Combinatorics. Ordered structures Computation Designs and configurations Exact sciences and technology Forests Mathematics Methods of scientific computing (including symbolic computation, algebraic computation) Numerical analysis Numerical analysis. Scientific computation Octrees Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Partitioning Sciences and techniques of general use Studies Symbols |
title | p4est: SCALABLE ALGORITHMS FOR PARALLEL ADAPTIVE MESH REFINEMENT ON FORESTS OF OCTREES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p4est:%20SCALABLE%20ALGORITHMS%20FOR%20PARALLEL%20ADAPTIVE%20MESH%20REFINEMENT%20ON%20FORESTS%20OF%20OCTREES&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=BURSTEDDE,%20Carsten&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2011-01-01&rft.volume=33&rft.issue=3-4&rft.spage=1103&rft.epage=1133&rft.pages=1103-1133&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/100791634&rft_dat=%3Cproquest_osti_%3E2411558311%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880056585&rft_id=info:pmid/&rfr_iscdi=true |