Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model
In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for dir...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-06, Vol.45 (1), p.37-46 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Computers & fluids |
container_volume | 45 |
creator | Redford, J.A. Sandham, N.D. Roberts, G.T. |
description | In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for direct numerical simulation of compressible flows to include a thin plate that is thermally fully coupled to the flow. Even without such thermal coupling compressible flows with shock waves and turbulence represent a challenge for numerical methods. In this paper we review the scaling properties of algorithms, based on explicit high-order finite differencing combined with shock capturing, that are suitable for dealing with such flows. An application is then considered in which an isolated roughness element is of sufficient height to trigger transition in the presence of acoustic forcing. With the thermal wall model included it is observed that the plate heats up sufficiently during the simulation for the transition process to be halted and the flow consequently re-laminarises. |
doi_str_mv | 10.1016/j.compfluid.2010.11.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1564730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793010003361</els_id><sourcerecordid>875047237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-527ba4ef5d514830126b6e561fa96b0a668fd6f16e37e9cc0847617ac1dda8283</originalsourceid><addsrcrecordid>eNqFkUuPFCEQgInRxHH1N0hMjF56BJpH93Gz6ytZ40XPhIHCZkI3I9BO_PfSzmaPmpCQgq8oqj6EXlKyp4TKd8e9TfPJxzW4PSPbKd0Txh-hHR3U2BHF1WO0I4SLTo09eYqelXIkLe4Z3yF_GzLYipd1hhysibiEeY2mhrTg5HHNZilhi9qVj-mMTcVT-DHhL8ZOW9oBMrZpPUVw-BzqhA2uE-S58WcTI56Tg_gcPfEmFnhxv1-h7x_ef7v51N19_fj55vqus7xXtRNMHQwHL5ygfOgJZfIgQUjqzSgPxEg5eCc9ldArGK0lA1eSKmOpc2ZgQ3-FXl3eTaUGXWyoYCeblqX1qKmQXPWkQW8u0CmnnyuUqudQLMRoFkhr0YMShCvWq0a-_SdJFRmVaEs0VF1Qm1MpGbw-5TCb_FtTojdR-qgfROlNlKZUN1Et8_V9EVOaAN8mbkN5SGeccjmw7dvXFw7aAH8FyFt_sFhwfxVql8J_a_0BR9Ktag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709759755</pqid></control><display><type>article</type><title>Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Redford, J.A. ; Sandham, N.D. ; Roberts, G.T.</creator><creatorcontrib>Redford, J.A. ; Sandham, N.D. ; Roberts, G.T. ; UT-Battelle LLC/ORNL, Oak Ridge, TN (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><description>In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for direct numerical simulation of compressible flows to include a thin plate that is thermally fully coupled to the flow. Even without such thermal coupling compressible flows with shock waves and turbulence represent a challenge for numerical methods. In this paper we review the scaling properties of algorithms, based on explicit high-order finite differencing combined with shock capturing, that are suitable for dealing with such flows. An application is then considered in which an isolated roughness element is of sufficient height to trigger transition in the presence of acoustic forcing. With the thermal wall model included it is observed that the plate heats up sufficiently during the simulation for the transition process to be halted and the flow consequently re-laminarises.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2010.11.024</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundary layer transition ; Compressible flows; shock and detonation phenomena ; Computational fluid dynamics ; Computer Science ; Computer simulation ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; High Mach number ; Laminar–turbulent transition ; Mathematical models ; Mechanics ; Physics ; Roughness ; Supersonic and hypersonic flows ; Supersonic flow ; Transition to turbulence ; Turbulence ; Turbulent flow ; Turbulent flows, convection, and heat transfer ; Wall heating ; Walls</subject><ispartof>Computers & fluids, 2011-06, Vol.45 (1), p.37-46</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-527ba4ef5d514830126b6e561fa96b0a668fd6f16e37e9cc0847617ac1dda8283</citedby><cites>FETCH-LOGICAL-c437t-527ba4ef5d514830126b6e561fa96b0a668fd6f16e37e9cc0847617ac1dda8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2010.11.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24146820$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1564730$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Redford, J.A.</creatorcontrib><creatorcontrib>Sandham, N.D.</creatorcontrib><creatorcontrib>Roberts, G.T.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><title>Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model</title><title>Computers & fluids</title><description>In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for direct numerical simulation of compressible flows to include a thin plate that is thermally fully coupled to the flow. Even without such thermal coupling compressible flows with shock waves and turbulence represent a challenge for numerical methods. In this paper we review the scaling properties of algorithms, based on explicit high-order finite differencing combined with shock capturing, that are suitable for dealing with such flows. An application is then considered in which an isolated roughness element is of sufficient height to trigger transition in the presence of acoustic forcing. With the thermal wall model included it is observed that the plate heats up sufficiently during the simulation for the transition process to be halted and the flow consequently re-laminarises.</description><subject>Boundary layer transition</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Computational fluid dynamics</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>High Mach number</subject><subject>Laminar–turbulent transition</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Roughness</subject><subject>Supersonic and hypersonic flows</subject><subject>Supersonic flow</subject><subject>Transition to turbulence</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Wall heating</subject><subject>Walls</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUuPFCEQgInRxHH1N0hMjF56BJpH93Gz6ytZ40XPhIHCZkI3I9BO_PfSzmaPmpCQgq8oqj6EXlKyp4TKd8e9TfPJxzW4PSPbKd0Txh-hHR3U2BHF1WO0I4SLTo09eYqelXIkLe4Z3yF_GzLYipd1hhysibiEeY2mhrTg5HHNZilhi9qVj-mMTcVT-DHhL8ZOW9oBMrZpPUVw-BzqhA2uE-S58WcTI56Tg_gcPfEmFnhxv1-h7x_ef7v51N19_fj55vqus7xXtRNMHQwHL5ygfOgJZfIgQUjqzSgPxEg5eCc9ldArGK0lA1eSKmOpc2ZgQ3-FXl3eTaUGXWyoYCeblqX1qKmQXPWkQW8u0CmnnyuUqudQLMRoFkhr0YMShCvWq0a-_SdJFRmVaEs0VF1Qm1MpGbw-5TCb_FtTojdR-qgfROlNlKZUN1Et8_V9EVOaAN8mbkN5SGeccjmw7dvXFw7aAH8FyFt_sFhwfxVql8J_a_0BR9Ktag</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Redford, J.A.</creator><creator>Sandham, N.D.</creator><creator>Roberts, G.T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>20110601</creationdate><title>Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model</title><author>Redford, J.A. ; Sandham, N.D. ; Roberts, G.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-527ba4ef5d514830126b6e561fa96b0a668fd6f16e37e9cc0847617ac1dda8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer transition</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Computational fluid dynamics</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>High Mach number</topic><topic>Laminar–turbulent transition</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Roughness</topic><topic>Supersonic and hypersonic flows</topic><topic>Supersonic flow</topic><topic>Transition to turbulence</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Wall heating</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redford, J.A.</creatorcontrib><creatorcontrib>Sandham, N.D.</creatorcontrib><creatorcontrib>Roberts, G.T.</creatorcontrib><creatorcontrib>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redford, J.A.</au><au>Sandham, N.D.</au><au>Roberts, G.T.</au><aucorp>UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model</atitle><jtitle>Computers & fluids</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>45</volume><issue>1</issue><spage>37</spage><epage>46</epage><pages>37-46</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>In transitional and turbulent high speed boundary-layer flows the wall thermal boundary conditions play an important role and in many cases an assumption of a constant temperature or a specified heat flux may not be appropriate for numerical simulations. In this paper we extend a formulation for direct numerical simulation of compressible flows to include a thin plate that is thermally fully coupled to the flow. Even without such thermal coupling compressible flows with shock waves and turbulence represent a challenge for numerical methods. In this paper we review the scaling properties of algorithms, based on explicit high-order finite differencing combined with shock capturing, that are suitable for dealing with such flows. An application is then considered in which an isolated roughness element is of sufficient height to trigger transition in the presence of acoustic forcing. With the thermal wall model included it is observed that the plate heats up sufficiently during the simulation for the transition process to be halted and the flow consequently re-laminarises.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2010.11.024</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2011-06, Vol.45 (1), p.37-46 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_osti_scitechconnect_1564730 |
source | Access via ScienceDirect (Elsevier) |
subjects | Boundary layer transition Compressible flows shock and detonation phenomena Computational fluid dynamics Computer Science Computer simulation Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Heat transfer High Mach number Laminar–turbulent transition Mathematical models Mechanics Physics Roughness Supersonic and hypersonic flows Supersonic flow Transition to turbulence Turbulence Turbulent flow Turbulent flows, convection, and heat transfer Wall heating Walls |
title | Direct numerical simulation of transitional flow at high Mach number coupled with a thermal wall model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulation%20of%20transitional%20flow%20at%20high%20Mach%20number%20coupled%20with%20a%20thermal%20wall%20model&rft.jtitle=Computers%20&%20fluids&rft.au=Redford,%20J.A.&rft.aucorp=UT-Battelle%20LLC/ORNL,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-06-01&rft.volume=45&rft.issue=1&rft.spage=37&rft.epage=46&rft.pages=37-46&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2010.11.024&rft_dat=%3Cproquest_osti_%3E875047237%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709759755&rft_id=info:pmid/&rft_els_id=S0045793010003361&rfr_iscdi=true |