A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils

Results from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2019-09, Vol.124 (17-18), p.10049-10090
Hauptverfasser: Lawson, R. P., Woods, S., Jensen, E., Erfani, E., Gurganus, C., Gallagher, M., Connolly, P., Whiteway, J., Baran, A. J., May, P., Heymsfield, A., Schmitt, C. G., McFarquhar, G., Um, J., Protat, A., Bailey, M., Lance, S., Muehlbauer, A., Stith, J., Korolev, A., Toon, O. B., Krämer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10090
container_issue 17-18
container_start_page 10049
container_title Journal of geophysical research. Atmospheres
container_volume 124
creator Lawson, R. P.
Woods, S.
Jensen, E.
Erfani, E.
Gurganus, C.
Gallagher, M.
Connolly, P.
Whiteway, J.
Baran, A. J.
May, P.
Heymsfield, A.
Schmitt, C. G.
McFarquhar, G.
Um, J.
Protat, A.
Bailey, M.
Lance, S.
Muehlbauer, A.
Stith, J.
Korolev, A.
Toon, O. B.
Krämer, M.
description Results from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette‐shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice > ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate‐like and columnar crystals and aggregates. Midlatitude continental anvils contain single‐rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are < ~100 μm and quasi‐spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations. Key Points There is a distinct difference in the shapes of cirrus ice particles formed in situ and cirrus generated as the result of convective anvils The shapes of ice particles in tropical maritime anvil cirrus are characteristically different from ice particles in midlatitude convective anvils Numerical simulations of the generation of in situ and anvil cirrus can incorporate ice particle shape information to improve radiative transfer parameterizations
doi_str_mv 10.1029/2018JD030122
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1561329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307920477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4382-b2a7769926ab7664e1a981c06c8635fde1247b40254224f14d99f51fa0ba52c23</originalsourceid><addsrcrecordid>eNp90N9LwzAQB_AiCo65N_-AoK9Ok8uPNo9jc3NjoGwKvoU0TVlG186k3dh_b0dFfPJe7uA-HMc3im4JfiQY5BNgkiwmmGICcBH1gAg5TKQUl79z_HkdDULY4rYSTBlnvWg6Qit7cPaIqhzNjUVv2tfOFBatN3pvA3IlGjvvm4Dyyu9shuYlWru6QbrMzstReXBFuImucl0EO_jp_ehj-vw-fhkuX2fz8Wg5NIwmMExBx7GQEoROYyGYJVomxGBhEkF5nlkCLE4ZBs4AWE5YJmXOSa5xqjkYoP3orrtbhdqpYFxtzcZUZWlNrQgXhIJs0X2H9r76amyo1bZqfNn-pYDiWAJmcdyqh04ZX4Xgba723u20PymC1TlR9TfRltOOH11hT_9atZitJpwLDvQb9tZyvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307920477</pqid></control><display><type>article</type><title>A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Lawson, R. P. ; Woods, S. ; Jensen, E. ; Erfani, E. ; Gurganus, C. ; Gallagher, M. ; Connolly, P. ; Whiteway, J. ; Baran, A. J. ; May, P. ; Heymsfield, A. ; Schmitt, C. G. ; McFarquhar, G. ; Um, J. ; Protat, A. ; Bailey, M. ; Lance, S. ; Muehlbauer, A. ; Stith, J. ; Korolev, A. ; Toon, O. B. ; Krämer, M.</creator><creatorcontrib>Lawson, R. P. ; Woods, S. ; Jensen, E. ; Erfani, E. ; Gurganus, C. ; Gallagher, M. ; Connolly, P. ; Whiteway, J. ; Baran, A. J. ; May, P. ; Heymsfield, A. ; Schmitt, C. G. ; McFarquhar, G. ; Um, J. ; Protat, A. ; Bailey, M. ; Lance, S. ; Muehlbauer, A. ; Stith, J. ; Korolev, A. ; Toon, O. B. ; Krämer, M.</creatorcontrib><description>Results from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette‐shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice &gt; ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate‐like and columnar crystals and aggregates. Midlatitude continental anvils contain single‐rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are &lt; ~100 μm and quasi‐spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations. Key Points There is a distinct difference in the shapes of cirrus ice particles formed in situ and cirrus generated as the result of convective anvils The shapes of ice particles in tropical maritime anvil cirrus are characteristically different from ice particles in midlatitude convective anvils Numerical simulations of the generation of in situ and anvil cirrus can incorporate ice particle shape information to improve radiative transfer parameterizations</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD030122</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aggregates ; anvil cirrus ; Anvil clouds ; Anvils ; cirrus ; cloud microphysics ; Computer simulation ; Convection ; Crystals ; Geophysics ; Ice ; Ice formation ; ice particle habit ; Ice particles ; in situ cirrus ; Numerical simulations ; Parameterization ; Polycrystals ; Radiative transfer ; Regrowth ; Rosette shapes ; Temperature ; Tropical climate ; Troposphere ; Upper troposphere</subject><ispartof>Journal of geophysical research. Atmospheres, 2019-09, Vol.124 (17-18), p.10049-10090</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4382-b2a7769926ab7664e1a981c06c8635fde1247b40254224f14d99f51fa0ba52c23</citedby><cites>FETCH-LOGICAL-c4382-b2a7769926ab7664e1a981c06c8635fde1247b40254224f14d99f51fa0ba52c23</cites><orcidid>0000-0002-7364-1912 ; 0000-0002-6451-5455 ; 0000-0002-3294-7405 ; 0000-0002-4968-6088 ; 0000-0003-0950-0135 ; 0000-0002-0999-1627 ; 0000-0003-2174-8889 ; 0000-0003-3877-8419 ; 0000-0003-3829-6970 ; 0000-0002-7886-9043 ; 0000-0002-2396-2582 ; 0000-0002-2888-1722 ; 0000-0002-1394-3062 ; 0000-0002-7514-4012 ; 0000-0003-0840-7780 ; 0000-0002-8933-874X ; 0000000249686088 ; 0000000223962582 ; 0000000264515455 ; 0000000275144012 ; 0000000321748889 ; 000000028933874X ; 0000000273641912 ; 0000000338778419 ; 0000000228881722 ; 0000000209991627 ; 0000000308407780 ; 0000000338296970 ; 0000000232947405 ; 0000000309500135 ; 0000000278869043 ; 0000000213943062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD030122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD030122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1561329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lawson, R. P.</creatorcontrib><creatorcontrib>Woods, S.</creatorcontrib><creatorcontrib>Jensen, E.</creatorcontrib><creatorcontrib>Erfani, E.</creatorcontrib><creatorcontrib>Gurganus, C.</creatorcontrib><creatorcontrib>Gallagher, M.</creatorcontrib><creatorcontrib>Connolly, P.</creatorcontrib><creatorcontrib>Whiteway, J.</creatorcontrib><creatorcontrib>Baran, A. J.</creatorcontrib><creatorcontrib>May, P.</creatorcontrib><creatorcontrib>Heymsfield, A.</creatorcontrib><creatorcontrib>Schmitt, C. G.</creatorcontrib><creatorcontrib>McFarquhar, G.</creatorcontrib><creatorcontrib>Um, J.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bailey, M.</creatorcontrib><creatorcontrib>Lance, S.</creatorcontrib><creatorcontrib>Muehlbauer, A.</creatorcontrib><creatorcontrib>Stith, J.</creatorcontrib><creatorcontrib>Korolev, A.</creatorcontrib><creatorcontrib>Toon, O. B.</creatorcontrib><creatorcontrib>Krämer, M.</creatorcontrib><title>A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils</title><title>Journal of geophysical research. Atmospheres</title><description>Results from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette‐shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice &gt; ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate‐like and columnar crystals and aggregates. Midlatitude continental anvils contain single‐rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are &lt; ~100 μm and quasi‐spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations. Key Points There is a distinct difference in the shapes of cirrus ice particles formed in situ and cirrus generated as the result of convective anvils The shapes of ice particles in tropical maritime anvil cirrus are characteristically different from ice particles in midlatitude convective anvils Numerical simulations of the generation of in situ and anvil cirrus can incorporate ice particle shape information to improve radiative transfer parameterizations</description><subject>Aggregates</subject><subject>anvil cirrus</subject><subject>Anvil clouds</subject><subject>Anvils</subject><subject>cirrus</subject><subject>cloud microphysics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Crystals</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Ice formation</subject><subject>ice particle habit</subject><subject>Ice particles</subject><subject>in situ cirrus</subject><subject>Numerical simulations</subject><subject>Parameterization</subject><subject>Polycrystals</subject><subject>Radiative transfer</subject><subject>Regrowth</subject><subject>Rosette shapes</subject><subject>Temperature</subject><subject>Tropical climate</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90N9LwzAQB_AiCo65N_-AoK9Ok8uPNo9jc3NjoGwKvoU0TVlG186k3dh_b0dFfPJe7uA-HMc3im4JfiQY5BNgkiwmmGICcBH1gAg5TKQUl79z_HkdDULY4rYSTBlnvWg6Qit7cPaIqhzNjUVv2tfOFBatN3pvA3IlGjvvm4Dyyu9shuYlWru6QbrMzstReXBFuImucl0EO_jp_ehj-vw-fhkuX2fz8Wg5NIwmMExBx7GQEoROYyGYJVomxGBhEkF5nlkCLE4ZBs4AWE5YJmXOSa5xqjkYoP3orrtbhdqpYFxtzcZUZWlNrQgXhIJs0X2H9r76amyo1bZqfNn-pYDiWAJmcdyqh04ZX4Xgba723u20PymC1TlR9TfRltOOH11hT_9atZitJpwLDvQb9tZyvg</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lawson, R. P.</creator><creator>Woods, S.</creator><creator>Jensen, E.</creator><creator>Erfani, E.</creator><creator>Gurganus, C.</creator><creator>Gallagher, M.</creator><creator>Connolly, P.</creator><creator>Whiteway, J.</creator><creator>Baran, A. J.</creator><creator>May, P.</creator><creator>Heymsfield, A.</creator><creator>Schmitt, C. G.</creator><creator>McFarquhar, G.</creator><creator>Um, J.</creator><creator>Protat, A.</creator><creator>Bailey, M.</creator><creator>Lance, S.</creator><creator>Muehlbauer, A.</creator><creator>Stith, J.</creator><creator>Korolev, A.</creator><creator>Toon, O. B.</creator><creator>Krämer, M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7364-1912</orcidid><orcidid>https://orcid.org/0000-0002-6451-5455</orcidid><orcidid>https://orcid.org/0000-0002-3294-7405</orcidid><orcidid>https://orcid.org/0000-0002-4968-6088</orcidid><orcidid>https://orcid.org/0000-0003-0950-0135</orcidid><orcidid>https://orcid.org/0000-0002-0999-1627</orcidid><orcidid>https://orcid.org/0000-0003-2174-8889</orcidid><orcidid>https://orcid.org/0000-0003-3877-8419</orcidid><orcidid>https://orcid.org/0000-0003-3829-6970</orcidid><orcidid>https://orcid.org/0000-0002-7886-9043</orcidid><orcidid>https://orcid.org/0000-0002-2396-2582</orcidid><orcidid>https://orcid.org/0000-0002-2888-1722</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-7514-4012</orcidid><orcidid>https://orcid.org/0000-0003-0840-7780</orcidid><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000000249686088</orcidid><orcidid>https://orcid.org/0000000223962582</orcidid><orcidid>https://orcid.org/0000000264515455</orcidid><orcidid>https://orcid.org/0000000275144012</orcidid><orcidid>https://orcid.org/0000000321748889</orcidid><orcidid>https://orcid.org/000000028933874X</orcidid><orcidid>https://orcid.org/0000000273641912</orcidid><orcidid>https://orcid.org/0000000338778419</orcidid><orcidid>https://orcid.org/0000000228881722</orcidid><orcidid>https://orcid.org/0000000209991627</orcidid><orcidid>https://orcid.org/0000000308407780</orcidid><orcidid>https://orcid.org/0000000338296970</orcidid><orcidid>https://orcid.org/0000000232947405</orcidid><orcidid>https://orcid.org/0000000309500135</orcidid><orcidid>https://orcid.org/0000000278869043</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid></search><sort><creationdate>20190901</creationdate><title>A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils</title><author>Lawson, R. P. ; Woods, S. ; Jensen, E. ; Erfani, E. ; Gurganus, C. ; Gallagher, M. ; Connolly, P. ; Whiteway, J. ; Baran, A. J. ; May, P. ; Heymsfield, A. ; Schmitt, C. G. ; McFarquhar, G. ; Um, J. ; Protat, A. ; Bailey, M. ; Lance, S. ; Muehlbauer, A. ; Stith, J. ; Korolev, A. ; Toon, O. B. ; Krämer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4382-b2a7769926ab7664e1a981c06c8635fde1247b40254224f14d99f51fa0ba52c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>anvil cirrus</topic><topic>Anvil clouds</topic><topic>Anvils</topic><topic>cirrus</topic><topic>cloud microphysics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Crystals</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Ice formation</topic><topic>ice particle habit</topic><topic>Ice particles</topic><topic>in situ cirrus</topic><topic>Numerical simulations</topic><topic>Parameterization</topic><topic>Polycrystals</topic><topic>Radiative transfer</topic><topic>Regrowth</topic><topic>Rosette shapes</topic><topic>Temperature</topic><topic>Tropical climate</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawson, R. P.</creatorcontrib><creatorcontrib>Woods, S.</creatorcontrib><creatorcontrib>Jensen, E.</creatorcontrib><creatorcontrib>Erfani, E.</creatorcontrib><creatorcontrib>Gurganus, C.</creatorcontrib><creatorcontrib>Gallagher, M.</creatorcontrib><creatorcontrib>Connolly, P.</creatorcontrib><creatorcontrib>Whiteway, J.</creatorcontrib><creatorcontrib>Baran, A. J.</creatorcontrib><creatorcontrib>May, P.</creatorcontrib><creatorcontrib>Heymsfield, A.</creatorcontrib><creatorcontrib>Schmitt, C. G.</creatorcontrib><creatorcontrib>McFarquhar, G.</creatorcontrib><creatorcontrib>Um, J.</creatorcontrib><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bailey, M.</creatorcontrib><creatorcontrib>Lance, S.</creatorcontrib><creatorcontrib>Muehlbauer, A.</creatorcontrib><creatorcontrib>Stith, J.</creatorcontrib><creatorcontrib>Korolev, A.</creatorcontrib><creatorcontrib>Toon, O. B.</creatorcontrib><creatorcontrib>Krämer, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawson, R. P.</au><au>Woods, S.</au><au>Jensen, E.</au><au>Erfani, E.</au><au>Gurganus, C.</au><au>Gallagher, M.</au><au>Connolly, P.</au><au>Whiteway, J.</au><au>Baran, A. J.</au><au>May, P.</au><au>Heymsfield, A.</au><au>Schmitt, C. G.</au><au>McFarquhar, G.</au><au>Um, J.</au><au>Protat, A.</au><au>Bailey, M.</au><au>Lance, S.</au><au>Muehlbauer, A.</au><au>Stith, J.</au><au>Korolev, A.</au><au>Toon, O. B.</au><au>Krämer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>124</volume><issue>17-18</issue><spage>10049</spage><epage>10090</epage><pages>10049-10090</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Results from 22 airborne field campaigns, including more than 10 million high‐resolution particle images collected in cirrus formed in situ and in convective anvils, are interpreted in terms of particle shapes and their potential impact on radiative transfer. Emphasis is placed on characterizing ice particle shapes in tropical maritime and midlatitude continental anvil cirrus, as well as in cirrus formed in situ in the upper troposphere, and subvisible cirrus in the upper tropical troposphere layer. There is a distinctive difference in cirrus ice particle shapes formed in situ compared to those in anvils that are generated in close proximity to convection. More than half the mass in cirrus formed in situ are rosette shapes (polycrystals and bullet rosettes). Cirrus formed from fresh convective anvils is mostly devoid of rosette‐shaped particles. However, small frozen drops may experience regrowth downwind of an aged anvil in a regime with RHice &gt; ~120% and then grow into rosette shapes. Identifiable particle shapes in tropical maritime anvils that have not been impacted by continental influences typically contain mostly single plate‐like and columnar crystals and aggregates. Midlatitude continental anvils contain single‐rimed particles, more and larger aggregates with riming, and chains of small ice particles when in a highly electrified environment. The particles in subvisible cirrus are &lt; ~100 μm and quasi‐spherical with some plates and rare trigonal shapes. Percentages of particle shapes and power laws relating mean particle area and mass to dimension are provided to improve parameterization of remote retrievals and numerical simulations. Key Points There is a distinct difference in the shapes of cirrus ice particles formed in situ and cirrus generated as the result of convective anvils The shapes of ice particles in tropical maritime anvil cirrus are characteristically different from ice particles in midlatitude convective anvils Numerical simulations of the generation of in situ and anvil cirrus can incorporate ice particle shape information to improve radiative transfer parameterizations</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD030122</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-7364-1912</orcidid><orcidid>https://orcid.org/0000-0002-6451-5455</orcidid><orcidid>https://orcid.org/0000-0002-3294-7405</orcidid><orcidid>https://orcid.org/0000-0002-4968-6088</orcidid><orcidid>https://orcid.org/0000-0003-0950-0135</orcidid><orcidid>https://orcid.org/0000-0002-0999-1627</orcidid><orcidid>https://orcid.org/0000-0003-2174-8889</orcidid><orcidid>https://orcid.org/0000-0003-3877-8419</orcidid><orcidid>https://orcid.org/0000-0003-3829-6970</orcidid><orcidid>https://orcid.org/0000-0002-7886-9043</orcidid><orcidid>https://orcid.org/0000-0002-2396-2582</orcidid><orcidid>https://orcid.org/0000-0002-2888-1722</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-7514-4012</orcidid><orcidid>https://orcid.org/0000-0003-0840-7780</orcidid><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000000249686088</orcidid><orcidid>https://orcid.org/0000000223962582</orcidid><orcidid>https://orcid.org/0000000264515455</orcidid><orcidid>https://orcid.org/0000000275144012</orcidid><orcidid>https://orcid.org/0000000321748889</orcidid><orcidid>https://orcid.org/000000028933874X</orcidid><orcidid>https://orcid.org/0000000273641912</orcidid><orcidid>https://orcid.org/0000000338778419</orcidid><orcidid>https://orcid.org/0000000228881722</orcidid><orcidid>https://orcid.org/0000000209991627</orcidid><orcidid>https://orcid.org/0000000308407780</orcidid><orcidid>https://orcid.org/0000000338296970</orcidid><orcidid>https://orcid.org/0000000232947405</orcidid><orcidid>https://orcid.org/0000000309500135</orcidid><orcidid>https://orcid.org/0000000278869043</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2019-09, Vol.124 (17-18), p.10049-10090
issn 2169-897X
2169-8996
language eng
recordid cdi_osti_scitechconnect_1561329
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Aggregates
anvil cirrus
Anvil clouds
Anvils
cirrus
cloud microphysics
Computer simulation
Convection
Crystals
Geophysics
Ice
Ice formation
ice particle habit
Ice particles
in situ cirrus
Numerical simulations
Parameterization
Polycrystals
Radiative transfer
Regrowth
Rosette shapes
Temperature
Tropical climate
Troposphere
Upper troposphere
title A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Ice%20Particle%20Shapes%20in%20Cirrus%20formed%20In%20Situ%20and%20in%20Anvils&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Lawson,%20R.%20P.&rft.date=2019-09-01&rft.volume=124&rft.issue=17-18&rft.spage=10049&rft.epage=10090&rft.pages=10049-10090&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD030122&rft_dat=%3Cproquest_osti_%3E2307920477%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307920477&rft_id=info:pmid/&rfr_iscdi=true