Practical Considerations for Continuum Models Applied to Surface Electrochemistry

Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2019-11, Vol.20 (22), p.3074-3080
Hauptverfasser: Gauthier, Joseph A., Dickens, Colin F., Ringe, Stefan, Chan, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3080
container_issue 22
container_start_page 3074
container_title Chemphyschem
container_volume 20
creator Gauthier, Joseph A.
Dickens, Colin F.
Ringe, Stefan
Chan, Karen
description Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry. Charge density isosurface illustrating the strong dipole moment exhibited by CO2 on Pt (111). The yellow surface corresponds to electron density equal to 0.01 eÅ−3, whereas the blue corresponds to negative electron density of the same magnitude. The strong dipole moment gives a potential dependence of CO2 adsorption, despite no formal proton/electron transfer process occurring. These potential dependencies can be seen with continuum solvation techniques, which we explore in this work.
doi_str_mv 10.1002/cphc.201900536
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1560678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319462345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4776-1ea017dc1115654cba0fb057dceaf2ddb0694f10fcf781de272d81df454b04ed3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaT7aa4_FtJdedjOSJcs-BpM2hZQmtD0LWRqxCl7LlWTC_vto2U0KufQ0w_DMwwwvIR8orCkAuzDzxqwZ0A5A1M0rckp53a1kw-nrY89ZLU7IWUr3ANCCpG_JSU1rKhvWnpK726hN9kaPVR-m5C1GnX3pKhfifpT9tCzb6kewOKbqcp5Hj7bKofq1RKcNVlcjmhyD2eDWpxx378gbp8eE74_1nPz5evW7v17d_Pz2vb-8WRkuZbOiqIFKayilohHcDBrcAKJMUDtm7QBNxx0FZ5xsqUUmmS3VccEH4Gjrc_Lp4A0pe5WMz2g2JkxTOUcVJzSyLdCXAzTH8HfBlFU50uA46gnDkhRjousYa8Ue_fwCvQ9LnMoLitW04w2ruSjU-kCZGFKK6NQc_VbHnaKg9omofSLqOZGy8PGoXYYt2mf8KYICdAfgwY-4-49O9bfX_T_5Iz6Xl4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319462345</pqid></control><display><type>article</type><title>Practical Considerations for Continuum Models Applied to Surface Electrochemistry</title><source>Wiley Online Library All Journals</source><creator>Gauthier, Joseph A. ; Dickens, Colin F. ; Ringe, Stefan ; Chan, Karen</creator><creatorcontrib>Gauthier, Joseph A. ; Dickens, Colin F. ; Ringe, Stefan ; Chan, Karen ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry. Charge density isosurface illustrating the strong dipole moment exhibited by CO2 on Pt (111). The yellow surface corresponds to electron density equal to 0.01 eÅ−3, whereas the blue corresponds to negative electron density of the same magnitude. The strong dipole moment gives a potential dependence of CO2 adsorption, despite no formal proton/electron transfer process occurring. These potential dependencies can be seen with continuum solvation techniques, which we explore in this work.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201900536</identifier><identifier>PMID: 31317628</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge simulation ; Charge transfer ; Computational efficiency ; Computer simulation ; Continuum modeling ; Electrochemistry ; Electrolytes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Iterative methods ; Solvation ; Surface charge</subject><ispartof>Chemphyschem, 2019-11, Vol.20 (22), p.3074-3080</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4776-1ea017dc1115654cba0fb057dceaf2ddb0694f10fcf781de272d81df454b04ed3</citedby><cites>FETCH-LOGICAL-c4776-1ea017dc1115654cba0fb057dceaf2ddb0694f10fcf781de272d81df454b04ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201900536$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201900536$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31317628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1560678$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gauthier, Joseph A.</creatorcontrib><creatorcontrib>Dickens, Colin F.</creatorcontrib><creatorcontrib>Ringe, Stefan</creatorcontrib><creatorcontrib>Chan, Karen</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Practical Considerations for Continuum Models Applied to Surface Electrochemistry</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry. Charge density isosurface illustrating the strong dipole moment exhibited by CO2 on Pt (111). The yellow surface corresponds to electron density equal to 0.01 eÅ−3, whereas the blue corresponds to negative electron density of the same magnitude. The strong dipole moment gives a potential dependence of CO2 adsorption, despite no formal proton/electron transfer process occurring. These potential dependencies can be seen with continuum solvation techniques, which we explore in this work.</description><subject>Charge simulation</subject><subject>Charge transfer</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Continuum modeling</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Iterative methods</subject><subject>Solvation</subject><subject>Surface charge</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVpaT7aa4_FtJdedjOSJcs-BpM2hZQmtD0LWRqxCl7LlWTC_vto2U0KufQ0w_DMwwwvIR8orCkAuzDzxqwZ0A5A1M0rckp53a1kw-nrY89ZLU7IWUr3ANCCpG_JSU1rKhvWnpK726hN9kaPVR-m5C1GnX3pKhfifpT9tCzb6kewOKbqcp5Hj7bKofq1RKcNVlcjmhyD2eDWpxx378gbp8eE74_1nPz5evW7v17d_Pz2vb-8WRkuZbOiqIFKayilohHcDBrcAKJMUDtm7QBNxx0FZ5xsqUUmmS3VccEH4Gjrc_Lp4A0pe5WMz2g2JkxTOUcVJzSyLdCXAzTH8HfBlFU50uA46gnDkhRjousYa8Ue_fwCvQ9LnMoLitW04w2ruSjU-kCZGFKK6NQc_VbHnaKg9omofSLqOZGy8PGoXYYt2mf8KYICdAfgwY-4-49O9bfX_T_5Iz6Xl4E</recordid><startdate>20191119</startdate><enddate>20191119</enddate><creator>Gauthier, Joseph A.</creator><creator>Dickens, Colin F.</creator><creator>Ringe, Stefan</creator><creator>Chan, Karen</creator><general>Wiley Subscription Services, Inc</general><general>ChemPubSoc Europe</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20191119</creationdate><title>Practical Considerations for Continuum Models Applied to Surface Electrochemistry</title><author>Gauthier, Joseph A. ; Dickens, Colin F. ; Ringe, Stefan ; Chan, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4776-1ea017dc1115654cba0fb057dceaf2ddb0694f10fcf781de272d81df454b04ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge simulation</topic><topic>Charge transfer</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Continuum modeling</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Iterative methods</topic><topic>Solvation</topic><topic>Surface charge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gauthier, Joseph A.</creatorcontrib><creatorcontrib>Dickens, Colin F.</creatorcontrib><creatorcontrib>Ringe, Stefan</creatorcontrib><creatorcontrib>Chan, Karen</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gauthier, Joseph A.</au><au>Dickens, Colin F.</au><au>Ringe, Stefan</au><au>Chan, Karen</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Considerations for Continuum Models Applied to Surface Electrochemistry</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2019-11-19</date><risdate>2019</risdate><volume>20</volume><issue>22</issue><spage>3074</spage><epage>3080</epage><pages>3074-3080</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Modelling the electrolyte at the electrochemical interface remains a major challenge in ab initio simulations of charge transfer processes at surfaces. Recently, the development of hybrid polarizable continuum models/ab initio models have allowed for the treatment of solvation and electrolyte charge in a computationally efficient way. However, challenges remain in its application. Recent literature has reported that large cell heights are required to reach convergence, which presents a serious computational cost. Furthermore, calculations of reaction energetics require costly iterations to tune the surface charge to the desired potential. In this work, we present a simple capacitor model of the interface that illuminates how to circumvent both of these challenges. We derive a correction to the energy for finite cell heights to obtain the large cell energies at no additional computational expense. We furthermore demonstrate that the reaction energetics determined at constant charge are easily mapped to those at constant potential, which eliminates the need to apply iterative schemes to tune the system to a constant potential. These developments together represent more than an order of magnitude reduction of the computational overhead required for the application of polarizable continuum models to surface electrochemistry. Charge density isosurface illustrating the strong dipole moment exhibited by CO2 on Pt (111). The yellow surface corresponds to electron density equal to 0.01 eÅ−3, whereas the blue corresponds to negative electron density of the same magnitude. The strong dipole moment gives a potential dependence of CO2 adsorption, despite no formal proton/electron transfer process occurring. These potential dependencies can be seen with continuum solvation techniques, which we explore in this work.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31317628</pmid><doi>10.1002/cphc.201900536</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2019-11, Vol.20 (22), p.3074-3080
issn 1439-4235
1439-7641
language eng
recordid cdi_osti_scitechconnect_1560678
source Wiley Online Library All Journals
subjects Charge simulation
Charge transfer
Computational efficiency
Computer simulation
Continuum modeling
Electrochemistry
Electrolytes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Iterative methods
Solvation
Surface charge
title Practical Considerations for Continuum Models Applied to Surface Electrochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Considerations%20for%20Continuum%20Models%20Applied%20to%20Surface%20Electrochemistry&rft.jtitle=Chemphyschem&rft.au=Gauthier,%20Joseph%20A.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-11-19&rft.volume=20&rft.issue=22&rft.spage=3074&rft.epage=3080&rft.pages=3074-3080&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201900536&rft_dat=%3Cproquest_osti_%3E2319462345%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319462345&rft_id=info:pmid/31317628&rfr_iscdi=true