Role of Defects in Ion Transport in Block Copolymer Electrolytes

Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-07, Vol.19 (7), p.4684-4691
Hauptverfasser: Kambe, Yu, Arges, Christopher G, Czaplewski, David A, Dolejsi, Moshe, Krishnan, Satya, Stoykovich, Mark P, de Pablo, Juan J, Nealey, Paul F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4691
container_issue 7
container_start_page 4684
container_title Nano letters
container_volume 19
creator Kambe, Yu
Arges, Christopher G
Czaplewski, David A
Dolejsi, Moshe
Krishnan, Satya
Stoykovich, Mark P
de Pablo, Juan J
Nealey, Paul F
description Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in understanding the ion transport properties of these materials is the difficulty of extracting structure–function relationships without having complete knowledge of all nanoscale transport pathways in bulk samples. Here we demonstrate a method for deriving structure-transport relationships for ion conducting block copolymers using thin films and interdigitated electrodes. Well-defined and directly imaged structure in films of poly­(styrene)-block-poly­(2-vinylpyridine) is controlled using techniques of directed self-assembly then the poly­(2-vinylpyridine) is selectively converted into an ion conductor. The ion conductivity is found to be directly proportional to the total number of connected paths between electrodes and the path length. A single defect such as a dislocation anywhere in the path of an ion conducting route disconnects and precludes that pathway from contributing to the conductivity and results in an increase in the dielectric parameter of the film. When all the ion conduction pathways are blocked between electrodes, the conductivity is negligible, 4 orders of magnitude lower compared to a completely connected morphology and the dielectric parameter increases by a factor of 50. These results have profound implications for the interpretation, design, and processing of block copolymer electrolytes for applications as ion conducting membranes.
doi_str_mv 10.1021/acs.nanolett.9b01758
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1560016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250637222</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-21d8ffc7b3c362e9049ffc3dbda0f63b5d19fe90b1f059908970f10c6131a51b3</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonR2Fp9A2M2nrxsHWDZLje1Vm3SxMTUM2FZiFu3UIEe-vbSbOvRE8zk-2fgQ-gawxgDwfdShbGV1nU6xjGvAU9YdYKGmFHIS87J6d-9KgboIoQVAHDK4BwNKCYMSkaH6OEjDcicyZ610SqGrLXZ3Nls6aUNG-fjvvHUOfWdTd3Gdbu19tmsS6hPRdThEp0Z2QV9dThH6PNltpy-5Yv31_n0cZHLglUxJ7ipjFGTmipaEs2h4KmkTd1IMCWtWYO5Se0aG2CcQ8UnYDCoElMsGa7pCN32c12IrQiqjVp9KWdteorArATAZYLuemjj3c9WhyjWbVC666TVbhsE2X-bTgghCS16VHkXgtdGbHy7ln4nMIi9YJEEi6NgcRCcYjeHDdt6rZu_0NFoAqAH9vGV23qbrPw_8xcL5ol-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250637222</pqid></control><display><type>article</type><title>Role of Defects in Ion Transport in Block Copolymer Electrolytes</title><source>ACS Publications</source><creator>Kambe, Yu ; Arges, Christopher G ; Czaplewski, David A ; Dolejsi, Moshe ; Krishnan, Satya ; Stoykovich, Mark P ; de Pablo, Juan J ; Nealey, Paul F</creator><creatorcontrib>Kambe, Yu ; Arges, Christopher G ; Czaplewski, David A ; Dolejsi, Moshe ; Krishnan, Satya ; Stoykovich, Mark P ; de Pablo, Juan J ; Nealey, Paul F ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in understanding the ion transport properties of these materials is the difficulty of extracting structure–function relationships without having complete knowledge of all nanoscale transport pathways in bulk samples. Here we demonstrate a method for deriving structure-transport relationships for ion conducting block copolymers using thin films and interdigitated electrodes. Well-defined and directly imaged structure in films of poly­(styrene)-block-poly­(2-vinylpyridine) is controlled using techniques of directed self-assembly then the poly­(2-vinylpyridine) is selectively converted into an ion conductor. The ion conductivity is found to be directly proportional to the total number of connected paths between electrodes and the path length. A single defect such as a dislocation anywhere in the path of an ion conducting route disconnects and precludes that pathway from contributing to the conductivity and results in an increase in the dielectric parameter of the film. When all the ion conduction pathways are blocked between electrodes, the conductivity is negligible, 4 orders of magnitude lower compared to a completely connected morphology and the dielectric parameter increases by a factor of 50. These results have profound implications for the interpretation, design, and processing of block copolymer electrolytes for applications as ion conducting membranes.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b01758</identifier><identifier>PMID: 31250653</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>block copolymer electrolytes ; directed assembly ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ion transport ; MATERIALS SCIENCE ; thin film</subject><ispartof>Nano letters, 2019-07, Vol.19 (7), p.4684-4691</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-21d8ffc7b3c362e9049ffc3dbda0f63b5d19fe90b1f059908970f10c6131a51b3</citedby><cites>FETCH-LOGICAL-a458t-21d8ffc7b3c362e9049ffc3dbda0f63b5d19fe90b1f059908970f10c6131a51b3</cites><orcidid>0000-0002-3526-516X ; 0000-0003-1703-8323 ; 0000-0003-3889-142X ; 0000-0002-1422-350X ; 0000000317038323 ; 000000023526516X ; 000000021422350X ; 000000033889142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b01758$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b01758$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31250653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1560016$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kambe, Yu</creatorcontrib><creatorcontrib>Arges, Christopher G</creatorcontrib><creatorcontrib>Czaplewski, David A</creatorcontrib><creatorcontrib>Dolejsi, Moshe</creatorcontrib><creatorcontrib>Krishnan, Satya</creatorcontrib><creatorcontrib>Stoykovich, Mark P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Role of Defects in Ion Transport in Block Copolymer Electrolytes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in understanding the ion transport properties of these materials is the difficulty of extracting structure–function relationships without having complete knowledge of all nanoscale transport pathways in bulk samples. Here we demonstrate a method for deriving structure-transport relationships for ion conducting block copolymers using thin films and interdigitated electrodes. Well-defined and directly imaged structure in films of poly­(styrene)-block-poly­(2-vinylpyridine) is controlled using techniques of directed self-assembly then the poly­(2-vinylpyridine) is selectively converted into an ion conductor. The ion conductivity is found to be directly proportional to the total number of connected paths between electrodes and the path length. A single defect such as a dislocation anywhere in the path of an ion conducting route disconnects and precludes that pathway from contributing to the conductivity and results in an increase in the dielectric parameter of the film. When all the ion conduction pathways are blocked between electrodes, the conductivity is negligible, 4 orders of magnitude lower compared to a completely connected morphology and the dielectric parameter increases by a factor of 50. These results have profound implications for the interpretation, design, and processing of block copolymer electrolytes for applications as ion conducting membranes.</description><subject>block copolymer electrolytes</subject><subject>directed assembly</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ion transport</subject><subject>MATERIALS SCIENCE</subject><subject>thin film</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonR2Fp9A2M2nrxsHWDZLje1Vm3SxMTUM2FZiFu3UIEe-vbSbOvRE8zk-2fgQ-gawxgDwfdShbGV1nU6xjGvAU9YdYKGmFHIS87J6d-9KgboIoQVAHDK4BwNKCYMSkaH6OEjDcicyZ610SqGrLXZ3Nls6aUNG-fjvvHUOfWdTd3Gdbu19tmsS6hPRdThEp0Z2QV9dThH6PNltpy-5Yv31_n0cZHLglUxJ7ipjFGTmipaEs2h4KmkTd1IMCWtWYO5Se0aG2CcQ8UnYDCoElMsGa7pCN32c12IrQiqjVp9KWdteorArATAZYLuemjj3c9WhyjWbVC666TVbhsE2X-bTgghCS16VHkXgtdGbHy7ln4nMIi9YJEEi6NgcRCcYjeHDdt6rZu_0NFoAqAH9vGV23qbrPw_8xcL5ol-</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Kambe, Yu</creator><creator>Arges, Christopher G</creator><creator>Czaplewski, David A</creator><creator>Dolejsi, Moshe</creator><creator>Krishnan, Satya</creator><creator>Stoykovich, Mark P</creator><creator>de Pablo, Juan J</creator><creator>Nealey, Paul F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/0000-0003-1703-8323</orcidid><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-1422-350X</orcidid><orcidid>https://orcid.org/0000000317038323</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/000000021422350X</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid></search><sort><creationdate>20190710</creationdate><title>Role of Defects in Ion Transport in Block Copolymer Electrolytes</title><author>Kambe, Yu ; Arges, Christopher G ; Czaplewski, David A ; Dolejsi, Moshe ; Krishnan, Satya ; Stoykovich, Mark P ; de Pablo, Juan J ; Nealey, Paul F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-21d8ffc7b3c362e9049ffc3dbda0f63b5d19fe90b1f059908970f10c6131a51b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>block copolymer electrolytes</topic><topic>directed assembly</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ion transport</topic><topic>MATERIALS SCIENCE</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kambe, Yu</creatorcontrib><creatorcontrib>Arges, Christopher G</creatorcontrib><creatorcontrib>Czaplewski, David A</creatorcontrib><creatorcontrib>Dolejsi, Moshe</creatorcontrib><creatorcontrib>Krishnan, Satya</creatorcontrib><creatorcontrib>Stoykovich, Mark P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kambe, Yu</au><au>Arges, Christopher G</au><au>Czaplewski, David A</au><au>Dolejsi, Moshe</au><au>Krishnan, Satya</au><au>Stoykovich, Mark P</au><au>de Pablo, Juan J</au><au>Nealey, Paul F</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Defects in Ion Transport in Block Copolymer Electrolytes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-07-10</date><risdate>2019</risdate><volume>19</volume><issue>7</issue><spage>4684</spage><epage>4691</epage><pages>4684-4691</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in understanding the ion transport properties of these materials is the difficulty of extracting structure–function relationships without having complete knowledge of all nanoscale transport pathways in bulk samples. Here we demonstrate a method for deriving structure-transport relationships for ion conducting block copolymers using thin films and interdigitated electrodes. Well-defined and directly imaged structure in films of poly­(styrene)-block-poly­(2-vinylpyridine) is controlled using techniques of directed self-assembly then the poly­(2-vinylpyridine) is selectively converted into an ion conductor. The ion conductivity is found to be directly proportional to the total number of connected paths between electrodes and the path length. A single defect such as a dislocation anywhere in the path of an ion conducting route disconnects and precludes that pathway from contributing to the conductivity and results in an increase in the dielectric parameter of the film. When all the ion conduction pathways are blocked between electrodes, the conductivity is negligible, 4 orders of magnitude lower compared to a completely connected morphology and the dielectric parameter increases by a factor of 50. These results have profound implications for the interpretation, design, and processing of block copolymer electrolytes for applications as ion conducting membranes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31250653</pmid><doi>10.1021/acs.nanolett.9b01758</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/0000-0003-1703-8323</orcidid><orcidid>https://orcid.org/0000-0003-3889-142X</orcidid><orcidid>https://orcid.org/0000-0002-1422-350X</orcidid><orcidid>https://orcid.org/0000000317038323</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/000000021422350X</orcidid><orcidid>https://orcid.org/000000033889142X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-07, Vol.19 (7), p.4684-4691
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1560016
source ACS Publications
subjects block copolymer electrolytes
directed assembly
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ion transport
MATERIALS SCIENCE
thin film
title Role of Defects in Ion Transport in Block Copolymer Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Defects%20in%20Ion%20Transport%20in%20Block%20Copolymer%20Electrolytes&rft.jtitle=Nano%20letters&rft.au=Kambe,%20Yu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-10&rft.volume=19&rft.issue=7&rft.spage=4684&rft.epage=4691&rft.pages=4684-4691&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b01758&rft_dat=%3Cproquest_osti_%3E2250637222%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250637222&rft_id=info:pmid/31250653&rfr_iscdi=true