Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions

Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-04, Vol.11 (16), p.7875-7884
Hauptverfasser: Mhanna, Ramona, Lee, Jonghun, Narayanan, Suresh, Reich, Daniel H, Leheny, Robert L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7884
container_issue 16
container_start_page 7875
container_title Nanoscale
container_volume 11
creator Mhanna, Ramona
Lee, Jonghun
Narayanan, Suresh
Reich, Daniel H
Leheny, Robert L
description Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.
doi_str_mv 10.1039/c8nr10440a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212927482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</originalsourceid><addsrcrecordid>eNpd0UtLJDEQB_AgLr4vfgAJehGhNa9JJ0cZfCzIKsvuuYlJNZOxOxmTNOK33-joHBYCVYcfVSn-CB1TckkJ11dWhUSJEMRsoT1GBGk4b9n2ppdiF-3nvCREai75DtrlREsh2nYP2aeFydA4WEFwEArOCzCp8cFNFhyOyUHCscfBhJiiy9gH7HMsKa68xSY4HGA0pfZvMY2DfwE8egvDADjHYSo-hnyIfvRmyHD0VQ_Q39ubP_P75uHx7uf8-qGxXLDStMwoo3vKlerrI5YSpmVLpGCqlUBEyy1zQlFpLKfEKKsVZVoxa2YzwxU_QKfruTEX32XrC9iFjSGALR2dzbTguqLzNVql-DpBLt3o88eHTYA45Y4xIhnjTMlKz_6jyzilUE-oqm5mrVCsqou1sinmnKDvVsmPJr13lHQf-XRz9ev3Zz7XFZ98jZyeR3Ab-h0I_weTbYk2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212927482</pqid></control><display><type>article</type><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><source>Royal Society Of Chemistry Journals</source><creator>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L</creator><creatorcontrib>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr10440a</identifier><identifier>PMID: 30964477</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Concentration gradient ; Depletion ; Domains ; Gold ; Hexagonal phase ; Micelles ; Nanoparticles ; Nanorods ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Self-assembly ; Shear ; Small angle X ray scattering ; Sodium salicylates ; Surfactants ; Vorticity</subject><ispartof>Nanoscale, 2019-04, Vol.11 (16), p.7875-7884</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</citedby><cites>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</cites><orcidid>0000-0001-5800-3595 ; 0000-0002-8924-1622 ; 0000000289241622 ; 0000000158003595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30964477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mhanna, Ramona</creatorcontrib><creatorcontrib>Lee, Jonghun</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Reich, Daniel H</creatorcontrib><creatorcontrib>Leheny, Robert L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</description><subject>Concentration gradient</subject><subject>Depletion</subject><subject>Domains</subject><subject>Gold</subject><subject>Hexagonal phase</subject><subject>Micelles</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Self-assembly</subject><subject>Shear</subject><subject>Small angle X ray scattering</subject><subject>Sodium salicylates</subject><subject>Surfactants</subject><subject>Vorticity</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLJDEQB_AgLr4vfgAJehGhNa9JJ0cZfCzIKsvuuYlJNZOxOxmTNOK33-joHBYCVYcfVSn-CB1TckkJ11dWhUSJEMRsoT1GBGk4b9n2ppdiF-3nvCREai75DtrlREsh2nYP2aeFydA4WEFwEArOCzCp8cFNFhyOyUHCscfBhJiiy9gH7HMsKa68xSY4HGA0pfZvMY2DfwE8egvDADjHYSo-hnyIfvRmyHD0VQ_Q39ubP_P75uHx7uf8-qGxXLDStMwoo3vKlerrI5YSpmVLpGCqlUBEyy1zQlFpLKfEKKsVZVoxa2YzwxU_QKfruTEX32XrC9iFjSGALR2dzbTguqLzNVql-DpBLt3o88eHTYA45Y4xIhnjTMlKz_6jyzilUE-oqm5mrVCsqou1sinmnKDvVsmPJr13lHQf-XRz9ev3Zz7XFZ98jZyeR3Ab-h0I_weTbYk2</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Mhanna, Ramona</creator><creator>Lee, Jonghun</creator><creator>Narayanan, Suresh</creator><creator>Reich, Daniel H</creator><creator>Leheny, Robert L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5800-3595</orcidid><orcidid>https://orcid.org/0000-0002-8924-1622</orcidid><orcidid>https://orcid.org/0000000289241622</orcidid><orcidid>https://orcid.org/0000000158003595</orcidid></search><sort><creationdate>20190423</creationdate><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><author>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Concentration gradient</topic><topic>Depletion</topic><topic>Domains</topic><topic>Gold</topic><topic>Hexagonal phase</topic><topic>Micelles</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Self-assembly</topic><topic>Shear</topic><topic>Small angle X ray scattering</topic><topic>Sodium salicylates</topic><topic>Surfactants</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhanna, Ramona</creatorcontrib><creatorcontrib>Lee, Jonghun</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Reich, Daniel H</creatorcontrib><creatorcontrib>Leheny, Robert L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mhanna, Ramona</au><au>Lee, Jonghun</au><au>Narayanan, Suresh</au><au>Reich, Daniel H</au><au>Leheny, Robert L</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>11</volume><issue>16</issue><spage>7875</spage><epage>7884</epage><pages>7875-7884</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30964477</pmid><doi>10.1039/c8nr10440a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5800-3595</orcidid><orcidid>https://orcid.org/0000-0002-8924-1622</orcidid><orcidid>https://orcid.org/0000000289241622</orcidid><orcidid>https://orcid.org/0000000158003595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-04, Vol.11 (16), p.7875-7884
issn 2040-3364
2040-3372
language eng
recordid cdi_osti_scitechconnect_1559439
source Royal Society Of Chemistry Journals
subjects Concentration gradient
Depletion
Domains
Gold
Hexagonal phase
Micelles
Nanoparticles
Nanorods
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Self-assembly
Shear
Small angle X ray scattering
Sodium salicylates
Surfactants
Vorticity
title Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-dependent%20shear-induced%20order%20of%20nanorods%20in%20isotropic%20and%20nematic%20wormlike%20micelle%20solutions&rft.jtitle=Nanoscale&rft.au=Mhanna,%20Ramona&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-04-23&rft.volume=11&rft.issue=16&rft.spage=7875&rft.epage=7884&rft.pages=7875-7884&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr10440a&rft_dat=%3Cproquest_osti_%3E2212927482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212927482&rft_id=info:pmid/30964477&rfr_iscdi=true