Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions
Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-04, Vol.11 (16), p.7875-7884 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7884 |
---|---|
container_issue | 16 |
container_start_page | 7875 |
container_title | Nanoscale |
container_volume | 11 |
creator | Mhanna, Ramona Lee, Jonghun Narayanan, Suresh Reich, Daniel H Leheny, Robert L |
description | Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution. |
doi_str_mv | 10.1039/c8nr10440a |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1559439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212927482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</originalsourceid><addsrcrecordid>eNpd0UtLJDEQB_AgLr4vfgAJehGhNa9JJ0cZfCzIKsvuuYlJNZOxOxmTNOK33-joHBYCVYcfVSn-CB1TckkJ11dWhUSJEMRsoT1GBGk4b9n2ppdiF-3nvCREai75DtrlREsh2nYP2aeFydA4WEFwEArOCzCp8cFNFhyOyUHCscfBhJiiy9gH7HMsKa68xSY4HGA0pfZvMY2DfwE8egvDADjHYSo-hnyIfvRmyHD0VQ_Q39ubP_P75uHx7uf8-qGxXLDStMwoo3vKlerrI5YSpmVLpGCqlUBEyy1zQlFpLKfEKKsVZVoxa2YzwxU_QKfruTEX32XrC9iFjSGALR2dzbTguqLzNVql-DpBLt3o88eHTYA45Y4xIhnjTMlKz_6jyzilUE-oqm5mrVCsqou1sinmnKDvVsmPJr13lHQf-XRz9ev3Zz7XFZ98jZyeR3Ab-h0I_weTbYk2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212927482</pqid></control><display><type>article</type><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><source>Royal Society Of Chemistry Journals</source><creator>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L</creator><creatorcontrib>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr10440a</identifier><identifier>PMID: 30964477</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Concentration gradient ; Depletion ; Domains ; Gold ; Hexagonal phase ; Micelles ; Nanoparticles ; Nanorods ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Self-assembly ; Shear ; Small angle X ray scattering ; Sodium salicylates ; Surfactants ; Vorticity</subject><ispartof>Nanoscale, 2019-04, Vol.11 (16), p.7875-7884</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</citedby><cites>FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</cites><orcidid>0000-0001-5800-3595 ; 0000-0002-8924-1622 ; 0000000289241622 ; 0000000158003595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30964477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1559439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mhanna, Ramona</creatorcontrib><creatorcontrib>Lee, Jonghun</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Reich, Daniel H</creatorcontrib><creatorcontrib>Leheny, Robert L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</description><subject>Concentration gradient</subject><subject>Depletion</subject><subject>Domains</subject><subject>Gold</subject><subject>Hexagonal phase</subject><subject>Micelles</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Self-assembly</subject><subject>Shear</subject><subject>Small angle X ray scattering</subject><subject>Sodium salicylates</subject><subject>Surfactants</subject><subject>Vorticity</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLJDEQB_AgLr4vfgAJehGhNa9JJ0cZfCzIKsvuuYlJNZOxOxmTNOK33-joHBYCVYcfVSn-CB1TckkJ11dWhUSJEMRsoT1GBGk4b9n2ppdiF-3nvCREai75DtrlREsh2nYP2aeFydA4WEFwEArOCzCp8cFNFhyOyUHCscfBhJiiy9gH7HMsKa68xSY4HGA0pfZvMY2DfwE8egvDADjHYSo-hnyIfvRmyHD0VQ_Q39ubP_P75uHx7uf8-qGxXLDStMwoo3vKlerrI5YSpmVLpGCqlUBEyy1zQlFpLKfEKKsVZVoxa2YzwxU_QKfruTEX32XrC9iFjSGALR2dzbTguqLzNVql-DpBLt3o88eHTYA45Y4xIhnjTMlKz_6jyzilUE-oqm5mrVCsqou1sinmnKDvVsmPJr13lHQf-XRz9ev3Zz7XFZ98jZyeR3Ab-h0I_weTbYk2</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Mhanna, Ramona</creator><creator>Lee, Jonghun</creator><creator>Narayanan, Suresh</creator><creator>Reich, Daniel H</creator><creator>Leheny, Robert L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5800-3595</orcidid><orcidid>https://orcid.org/0000-0002-8924-1622</orcidid><orcidid>https://orcid.org/0000000289241622</orcidid><orcidid>https://orcid.org/0000000158003595</orcidid></search><sort><creationdate>20190423</creationdate><title>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</title><author>Mhanna, Ramona ; Lee, Jonghun ; Narayanan, Suresh ; Reich, Daniel H ; Leheny, Robert L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-72a8a9f1388f88f0c1029670642876e0473c2d4816ac310a8c9812982ca55a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Concentration gradient</topic><topic>Depletion</topic><topic>Domains</topic><topic>Gold</topic><topic>Hexagonal phase</topic><topic>Micelles</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Self-assembly</topic><topic>Shear</topic><topic>Small angle X ray scattering</topic><topic>Sodium salicylates</topic><topic>Surfactants</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhanna, Ramona</creatorcontrib><creatorcontrib>Lee, Jonghun</creatorcontrib><creatorcontrib>Narayanan, Suresh</creatorcontrib><creatorcontrib>Reich, Daniel H</creatorcontrib><creatorcontrib>Leheny, Robert L</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mhanna, Ramona</au><au>Lee, Jonghun</au><au>Narayanan, Suresh</au><au>Reich, Daniel H</au><au>Leheny, Robert L</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>11</volume><issue>16</issue><spage>7875</spage><epage>7884</epage><pages>7875-7884</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Small angle X-ray scattering with in situ shear was employed to study the assembly and ordering of dispersions of gold nanorods within wormlike micelle solutions formed by the surfactant cetylpyridinium chloride (CPyCl) and counter-ion sodium salicylate (NaSal). Above a threshold CPyCl concentration but below the isotropic-to-nematic transition of the micelles, the nanorods self-assembled under quiescent conditions into isotropically oriented domains with hexagonal order. Under steady shear at rates between 0.5 and 7.5 s-1, the nanorod assemblies acquired macroscopic orientational order in which the hexagonal planes were coincident with the flow-vorticity plane. The nanorods could be re-dispersed by strong shear but re-assembled following cessation of the shear. In the nematic phase of the micelles at higher surfactant concentration, the nanorods did not acquire hexagonal order but instead formed smectic-like layers in the gradient-vorticity plane under shear. Finally, at still higher surfactant concentration, where the micelles form a hexagonal phase, the nanorods showed no translational ordering but did acquire nematic-like order under shear due to alignment in the flow. Depletion forces mediated by the wormlike micelles are identified as the driving mechanism for this sequence of nanorod ordering behaviors, suggesting a novel mechanism for controlled, reconfigurable assembly of nanoparticles in solution.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30964477</pmid><doi>10.1039/c8nr10440a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5800-3595</orcidid><orcidid>https://orcid.org/0000-0002-8924-1622</orcidid><orcidid>https://orcid.org/0000000289241622</orcidid><orcidid>https://orcid.org/0000000158003595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-04, Vol.11 (16), p.7875-7884 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_osti_scitechconnect_1559439 |
source | Royal Society Of Chemistry Journals |
subjects | Concentration gradient Depletion Domains Gold Hexagonal phase Micelles Nanoparticles Nanorods PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Self-assembly Shear Small angle X ray scattering Sodium salicylates Surfactants Vorticity |
title | Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-dependent%20shear-induced%20order%20of%20nanorods%20in%20isotropic%20and%20nematic%20wormlike%20micelle%20solutions&rft.jtitle=Nanoscale&rft.au=Mhanna,%20Ramona&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-04-23&rft.volume=11&rft.issue=16&rft.spage=7875&rft.epage=7884&rft.pages=7875-7884&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr10440a&rft_dat=%3Cproquest_osti_%3E2212927482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212927482&rft_id=info:pmid/30964477&rfr_iscdi=true |