Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model
The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pres...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2019-09, Vol.32 (18), p.6177-6196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6196 |
---|---|
container_issue | 18 |
container_start_page | 6177 |
container_title | Journal of climate |
container_volume | 32 |
creator | Li, Qian Lee, Sukyoung England, Matthew H. McClean, Julie L. |
description | The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phases of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transportmay play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean. |
doi_str_mv | 10.1175/JCLI-D-19-0159.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1558709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26831703</jstor_id><sourcerecordid>26831703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2771-c4e77a182172b7dcca3c221cfe7fd0086398cf5cb26ac30c354559a52f9aec23</originalsourceid><addsrcrecordid>eNpFkc1OWzEQha2qSKTQPZtKFqwNM_Z1fL1ECaWpgpAKe8tx5iqJLnZqOxLZ8kQ8Q5-sN0p_VrM43_kWcxi7QLhGNPrm-2Q-E1OBVgBqe40f2Ai1BAFNIz-yEbS2Ea3R-pR9KmUDgHIMMGJvT-RLir4XNYlZrJR9jDvf8x9UtikW4qnjT2lXV5QjfwzkI39Yv9KSz_2eMp_Stq54TXwA_nO3g6P3mT-kJfEupxfu-X2fFoMXbxB-vf81DXl_zk463xf6_Oeeseevd8-Tb2L-eD-b3M5FkMagCA0Z47GVaOTCLEPwKkiJoSPTLQHasbJt6HRYyLEPCoLSjdbWa9lZT0GqM3Z51KZS166EdaWwCilGCtWh1q0BO0BXR2ib088dleo2aZeH9xQnlVUSQWszUHCkQk6lZOrcNq9ffN47BHdYwx3WcFOH1h3WcDhUvhwrm1JT_sfLcavQgFK_AaOAhr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393210557</pqid></control><display><type>article</type><title>Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Li, Qian ; Lee, Sukyoung ; England, Matthew H. ; McClean, Julie L.</creator><creatorcontrib>Li, Qian ; Lee, Sukyoung ; England, Matthew H. ; McClean, Julie L. ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phases of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transportmay play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-19-0159.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Anomalies ; Antarctic Oscillation ; Atmosphere-ocean interaction ; Carbon ; Climate variability ; Empirical analysis ; ENVIRONMENTAL SCIENCES ; General circulation models ; Heat ; Heat transport ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interannual variability ; Meteorology & atmospheric sciences ; Mixed layer ; Mixed layer depth ; Ocean circulation ; Ocean mixed layer ; Ocean models ; Oceans ; Orthogonal functions ; Phases ; Salinity ; Salinity variations ; Sea level ; Sea level pressure ; Shoals ; Simulation ; Southern Ocean ; Spring ; Spring (season) ; Stratification ; Studies ; Summer ; Surface boundary layer ; Surface cooling ; Surface layers ; Water circulation ; Water column ; Water masses ; Water stratification ; Westerlies</subject><ispartof>Journal of climate, 2019-09, Vol.32 (18), p.6177-6196</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2771-c4e77a182172b7dcca3c221cfe7fd0086398cf5cb26ac30c354559a52f9aec23</citedby><cites>FETCH-LOGICAL-c2771-c4e77a182172b7dcca3c221cfe7fd0086398cf5cb26ac30c354559a52f9aec23</cites><orcidid>0000-0002-2099-233X ; 000000022099233X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26831703$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26831703$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,886,3682,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1558709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Lee, Sukyoung</creatorcontrib><creatorcontrib>England, Matthew H.</creatorcontrib><creatorcontrib>McClean, Julie L.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model</title><title>Journal of climate</title><description>The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phases of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transportmay play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean.</description><subject>Advection</subject><subject>Anomalies</subject><subject>Antarctic Oscillation</subject><subject>Atmosphere-ocean interaction</subject><subject>Carbon</subject><subject>Climate variability</subject><subject>Empirical analysis</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>General circulation models</subject><subject>Heat</subject><subject>Heat transport</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interannual variability</subject><subject>Meteorology & atmospheric sciences</subject><subject>Mixed layer</subject><subject>Mixed layer depth</subject><subject>Ocean circulation</subject><subject>Ocean mixed layer</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Orthogonal functions</subject><subject>Phases</subject><subject>Salinity</subject><subject>Salinity variations</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Shoals</subject><subject>Simulation</subject><subject>Southern Ocean</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Stratification</subject><subject>Studies</subject><subject>Summer</subject><subject>Surface boundary layer</subject><subject>Surface cooling</subject><subject>Surface layers</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water masses</subject><subject>Water stratification</subject><subject>Westerlies</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkc1OWzEQha2qSKTQPZtKFqwNM_Z1fL1ECaWpgpAKe8tx5iqJLnZqOxLZ8kQ8Q5-sN0p_VrM43_kWcxi7QLhGNPrm-2Q-E1OBVgBqe40f2Ai1BAFNIz-yEbS2Ea3R-pR9KmUDgHIMMGJvT-RLir4XNYlZrJR9jDvf8x9UtikW4qnjT2lXV5QjfwzkI39Yv9KSz_2eMp_Stq54TXwA_nO3g6P3mT-kJfEupxfu-X2fFoMXbxB-vf81DXl_zk463xf6_Oeeseevd8-Tb2L-eD-b3M5FkMagCA0Z47GVaOTCLEPwKkiJoSPTLQHasbJt6HRYyLEPCoLSjdbWa9lZT0GqM3Z51KZS166EdaWwCilGCtWh1q0BO0BXR2ib088dleo2aZeH9xQnlVUSQWszUHCkQk6lZOrcNq9ffN47BHdYwx3WcFOH1h3WcDhUvhwrm1JT_sfLcavQgFK_AaOAhr8</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Li, Qian</creator><creator>Lee, Sukyoung</creator><creator>England, Matthew H.</creator><creator>McClean, Julie L.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2099-233X</orcidid><orcidid>https://orcid.org/000000022099233X</orcidid></search><sort><creationdate>20190915</creationdate><title>Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model</title><author>Li, Qian ; Lee, Sukyoung ; England, Matthew H. ; McClean, Julie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2771-c4e77a182172b7dcca3c221cfe7fd0086398cf5cb26ac30c354559a52f9aec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection</topic><topic>Anomalies</topic><topic>Antarctic Oscillation</topic><topic>Atmosphere-ocean interaction</topic><topic>Carbon</topic><topic>Climate variability</topic><topic>Empirical analysis</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>General circulation models</topic><topic>Heat</topic><topic>Heat transport</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interannual variability</topic><topic>Meteorology & atmospheric sciences</topic><topic>Mixed layer</topic><topic>Mixed layer depth</topic><topic>Ocean circulation</topic><topic>Ocean mixed layer</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Orthogonal functions</topic><topic>Phases</topic><topic>Salinity</topic><topic>Salinity variations</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Shoals</topic><topic>Simulation</topic><topic>Southern Ocean</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Stratification</topic><topic>Studies</topic><topic>Summer</topic><topic>Surface boundary layer</topic><topic>Surface cooling</topic><topic>Surface layers</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water masses</topic><topic>Water stratification</topic><topic>Westerlies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Lee, Sukyoung</creatorcontrib><creatorcontrib>England, Matthew H.</creatorcontrib><creatorcontrib>McClean, Julie L.</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qian</au><au>Lee, Sukyoung</au><au>England, Matthew H.</au><au>McClean, Julie L.</au><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model</atitle><jtitle>Journal of climate</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>32</volume><issue>18</issue><spage>6177</spage><epage>6196</epage><pages>6177-6196</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The relationship between the southern annular mode (SAM) and Southern Ocean mixed layer depth (MLD) is investigated using a global 0.1° resolution ocean model. The SAM index is defined as the principal component time series of the leading empirical orthogonal function of extratropical sea level pressure from September to December, when the zonally symmetric SAM feature is most prominent. Following positive phases of the SAM, anomalous deep mixed layers occur in the subsequent fall season, starting in May, particularly in the southeast Pacific. Composite analyses reveal that for positive SAM phases enhanced surface cooling caused by anomalously strong westerlies weakens the stratification of the water column, leading to deeper mixed layers during spring when the SAM signal is at its strongest. During the subsequent summer, the surface warms and the mixed layer shoals. However, beneath the warm surface layer, anomalously weak stratification persists throughout the summer and into fall. When the surface cools again during fall, the mixed layer readily deepens due to this weak interior stratification, a legacy from the previous springtime conditions. Therefore, the spring SAM–fall MLD relationship is interpreted here as a manifestation of reemergence of interior water mass anomalies. The opposite occurs after negative phases of the SAM, with anomalously shallow mixed layers resulting. Additional analyses reveal that for the MLD region in the southeast Pacific, the effects of salinity variations and Ekman heat advection are negligible, although Ekman heat transportmay play an important role in other regions where mode water is formed, such as south of Australia and in the Indian Ocean.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-19-0159.1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2099-233X</orcidid><orcidid>https://orcid.org/000000022099233X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2019-09, Vol.32 (18), p.6177-6196 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_osti_scitechconnect_1558709 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing |
subjects | Advection Anomalies Antarctic Oscillation Atmosphere-ocean interaction Carbon Climate variability Empirical analysis ENVIRONMENTAL SCIENCES General circulation models Heat Heat transport INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interannual variability Meteorology & atmospheric sciences Mixed layer Mixed layer depth Ocean circulation Ocean mixed layer Ocean models Oceans Orthogonal functions Phases Salinity Salinity variations Sea level Sea level pressure Shoals Simulation Southern Ocean Spring Spring (season) Stratification Studies Summer Surface boundary layer Surface cooling Surface layers Water circulation Water column Water masses Water stratification Westerlies |
title | Seasonal-to-Interannual Response of Southern Ocean Mixed Layer Depth to the Southern Annular Mode from a Global 1/10° Ocean Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal-to-Interannual%20Response%20of%20Southern%20Ocean%20Mixed%20Layer%20Depth%20to%20the%20Southern%20Annular%20Mode%20from%20a%20Global%201/10%C2%B0%20Ocean%20Model&rft.jtitle=Journal%20of%20climate&rft.au=Li,%20Qian&rft.aucorp=Univ.%20of%20California,%20San%20Diego,%20CA%20(United%20States)&rft.date=2019-09-15&rft.volume=32&rft.issue=18&rft.spage=6177&rft.epage=6196&rft.pages=6177-6196&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-19-0159.1&rft_dat=%3Cjstor_osti_%3E26831703%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393210557&rft_id=info:pmid/&rft_jstor_id=26831703&rfr_iscdi=true |