Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach

Several metal–organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-08, Vol.141 (32), p.12849-12854
Hauptverfasser: Baxter, Samuel J, Schneemann, Andreas, Ready, Austin D, Wijeratne, Pavithra, Wilkinson, Angus P, Burtch, Nicholas C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12854
container_issue 32
container_start_page 12849
container_title Journal of the American Chemical Society
container_volume 141
creator Baxter, Samuel J
Schneemann, Andreas
Ready, Austin D
Wijeratne, Pavithra
Wilkinson, Angus P
Burtch, Nicholas C
description Several metal–organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TM x , Zn2[(bdc)2–2x (TM-bdabco)2x ]­[dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a–b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from ∼186 K for the Zn-DMOF parent structure (x = 0) to ∼325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.
doi_str_mv 10.1021/jacs.9b06109
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1558313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261243398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-68a0f30266330a15f97843b7e0783abd41918a2e65120b4a1da271d3da283b003</originalsourceid><addsrcrecordid>eNptkD1PHDEQhq2IKByQLnVkUaVgwWPvh7dEiC_pEEWO2pr1-jgfu_bF3lWg4z_kH-aX4NUdpEnjkaVn3pl5CPkG7BQYh7M16nhaN6wEVn8iMyg4ywrg5R6ZMcZ4VslS7JODGNfpm3MJX8i-AAF1WYoZ0YvRWfdIFysTeuzo5fMGXbTeUevonRmw-_v65z48orOaXgXszW8fniJ9iFMX0jv7bFo6t-7JBPrTd7ad3nGYEs43m-BRr47I5yV20Xzd1UPycHW5uLjJ5vfXtxfn8wxzqIaslMiWgvG0l2AIxbKuZC6ayrBKCmzaHGqQyE2ZrmNNjtAir6AVqUjRMCYOyfE218fBqqjtYPRKe-eMHhQUhUxnJ-jHFkq7_RpNHFRvozZdh874MSrOS-C5ELVM6MkW1cHHGMxSbYLtMbwoYGpyryb3auc-4d93yWPTm_YDfpf9b_TUtfZjcMnG_7PeAHMAjDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261243398</pqid></control><display><type>article</type><title>Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach</title><source>American Chemical Society (ACS) Journals</source><creator>Baxter, Samuel J ; Schneemann, Andreas ; Ready, Austin D ; Wijeratne, Pavithra ; Wilkinson, Angus P ; Burtch, Nicholas C</creator><creatorcontrib>Baxter, Samuel J ; Schneemann, Andreas ; Ready, Austin D ; Wijeratne, Pavithra ; Wilkinson, Angus P ; Burtch, Nicholas C ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Several metal–organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TM x , Zn2[(bdc)2–2x (TM-bdabco)2x ]­[dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a–b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from ∼186 K for the Zn-DMOF parent structure (x = 0) to ∼325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b06109</identifier><identifier>PMID: 31319663</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-08, Vol.141 (32), p.12849-12854</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-68a0f30266330a15f97843b7e0783abd41918a2e65120b4a1da271d3da283b003</citedby><cites>FETCH-LOGICAL-a417t-68a0f30266330a15f97843b7e0783abd41918a2e65120b4a1da271d3da283b003</cites><orcidid>0000-0003-2904-400X ; 0000-0003-0052-7307 ; 0000-0003-2817-1891 ; 0000-0001-6801-2735 ; 000000032904400X ; 0000000300527307 ; 0000000168012735 ; 0000000328171891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.9b06109$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.9b06109$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31319663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1558313$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baxter, Samuel J</creatorcontrib><creatorcontrib>Schneemann, Andreas</creatorcontrib><creatorcontrib>Ready, Austin D</creatorcontrib><creatorcontrib>Wijeratne, Pavithra</creatorcontrib><creatorcontrib>Wilkinson, Angus P</creatorcontrib><creatorcontrib>Burtch, Nicholas C</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Several metal–organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TM x , Zn2[(bdc)2–2x (TM-bdabco)2x ]­[dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a–b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from ∼186 K for the Zn-DMOF parent structure (x = 0) to ∼325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkD1PHDEQhq2IKByQLnVkUaVgwWPvh7dEiC_pEEWO2pr1-jgfu_bF3lWg4z_kH-aX4NUdpEnjkaVn3pl5CPkG7BQYh7M16nhaN6wEVn8iMyg4ywrg5R6ZMcZ4VslS7JODGNfpm3MJX8i-AAF1WYoZ0YvRWfdIFysTeuzo5fMGXbTeUevonRmw-_v65z48orOaXgXszW8fniJ9iFMX0jv7bFo6t-7JBPrTd7ad3nGYEs43m-BRr47I5yV20Xzd1UPycHW5uLjJ5vfXtxfn8wxzqIaslMiWgvG0l2AIxbKuZC6ayrBKCmzaHGqQyE2ZrmNNjtAir6AVqUjRMCYOyfE218fBqqjtYPRKe-eMHhQUhUxnJ-jHFkq7_RpNHFRvozZdh874MSrOS-C5ELVM6MkW1cHHGMxSbYLtMbwoYGpyryb3auc-4d93yWPTm_YDfpf9b_TUtfZjcMnG_7PeAHMAjDY</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Baxter, Samuel J</creator><creator>Schneemann, Andreas</creator><creator>Ready, Austin D</creator><creator>Wijeratne, Pavithra</creator><creator>Wilkinson, Angus P</creator><creator>Burtch, Nicholas C</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2904-400X</orcidid><orcidid>https://orcid.org/0000-0003-0052-7307</orcidid><orcidid>https://orcid.org/0000-0003-2817-1891</orcidid><orcidid>https://orcid.org/0000-0001-6801-2735</orcidid><orcidid>https://orcid.org/000000032904400X</orcidid><orcidid>https://orcid.org/0000000300527307</orcidid><orcidid>https://orcid.org/0000000168012735</orcidid><orcidid>https://orcid.org/0000000328171891</orcidid></search><sort><creationdate>20190814</creationdate><title>Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach</title><author>Baxter, Samuel J ; Schneemann, Andreas ; Ready, Austin D ; Wijeratne, Pavithra ; Wilkinson, Angus P ; Burtch, Nicholas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-68a0f30266330a15f97843b7e0783abd41918a2e65120b4a1da271d3da283b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxter, Samuel J</creatorcontrib><creatorcontrib>Schneemann, Andreas</creatorcontrib><creatorcontrib>Ready, Austin D</creatorcontrib><creatorcontrib>Wijeratne, Pavithra</creatorcontrib><creatorcontrib>Wilkinson, Angus P</creatorcontrib><creatorcontrib>Burtch, Nicholas C</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxter, Samuel J</au><au>Schneemann, Andreas</au><au>Ready, Austin D</au><au>Wijeratne, Pavithra</au><au>Wilkinson, Angus P</au><au>Burtch, Nicholas C</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>141</volume><issue>32</issue><spage>12849</spage><epage>12854</epage><pages>12849-12854</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Several metal–organic frameworks are known to display negative thermal expansion (NTE). However, unlike traditional NTE material classes, there have been no reports where the thermal expansion of a MOF has been tuned continuously from negative to positive through the formation of single-phase solid solutions. In the system Zn-DMOF-TM x , Zn2[(bdc)2–2x (TM-bdabco)2x ]­[dabco], the introduction of increasing amounts of TM-bdc, with four methyl groups decorating the benzene dicarboxylate linker, leads to a smooth transition from negative to positive thermal expansion in the a–b plane of this tetragonal material. The temperature at which zero thermal expansion occurs evolves from ∼186 K for the Zn-DMOF parent structure (x = 0) to ∼325 K for Zn-DMOF-TM (x = 1.0). The formation of mixed linker solid solutions is likely a general strategy for the control of thermal expansion in MOFs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31319663</pmid><doi>10.1021/jacs.9b06109</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2904-400X</orcidid><orcidid>https://orcid.org/0000-0003-0052-7307</orcidid><orcidid>https://orcid.org/0000-0003-2817-1891</orcidid><orcidid>https://orcid.org/0000-0001-6801-2735</orcidid><orcidid>https://orcid.org/000000032904400X</orcidid><orcidid>https://orcid.org/0000000300527307</orcidid><orcidid>https://orcid.org/0000000168012735</orcidid><orcidid>https://orcid.org/0000000328171891</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-08, Vol.141 (32), p.12849-12854
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1558313
source American Chemical Society (ACS) Journals
title Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Thermal%20Expansion%20in%20Metal%E2%80%93Organic%20Frameworks%20Using%20a%20Mixed%20Linker%20Solid%20Solution%20Approach&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Baxter,%20Samuel%20J&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2019-08-14&rft.volume=141&rft.issue=32&rft.spage=12849&rft.epage=12854&rft.pages=12849-12854&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b06109&rft_dat=%3Cproquest_osti_%3E2261243398%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261243398&rft_id=info:pmid/31319663&rfr_iscdi=true