A high-order discontinuous Galerkin method for level set problems on polygonal meshes

We propose and analyze discontinuous Galerkin schemes for solving level set equations on polygonal meshes. For linear equations, we assume that the velocity is given only on the cell surface. Velocity inside mesh cells is approximated using virtual element projectors on polynomial spaces. For nonlin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-11, Vol.397 (C), p.108834, Article 108834
Hauptverfasser: Lipnikov, Konstantin, Morgan, Nathaniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 108834
container_title Journal of computational physics
container_volume 397
creator Lipnikov, Konstantin
Morgan, Nathaniel
description We propose and analyze discontinuous Galerkin schemes for solving level set equations on polygonal meshes. For linear equations, we assume that the velocity is given only on the cell surface. Velocity inside mesh cells is approximated using virtual element projectors on polynomial spaces. For nonlinear equations, we use the Taylor expansion to approximate the normalized solution gradient. We analyze the new schemes for a set of typical level set problems using square and polygonal meshes. The numerical results indicate great potential for using polygonal meshes in applications. •High-order DG schemes for level set equations on polygonal meshes.•New algorithms for velocity reconstruction inside mesh cells from boundary data.•Using Taylor expansion to calculate the normalized solution gradient.
doi_str_mv 10.1016/j.jcp.2019.07.033
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119305182</els_id><sourcerecordid>2303821217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8e14f098a8cfa69c88b491d2c58f664d0654f4fcd03c1677c7eaf3c30c52a97a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEuXjB7BZMCc8x0lsiwkhKEhILHS2XOeZOKRxsVMk_j2uysz0lnOf7j2EXDEoGbD2digHuy0rYKoEUQLnR2TBQEFRCdYekwVAxQqlFDslZykNACCbWi7I6p72_qMvQuww0s4nG6bZT7uwS3RpRoyffqIbnPvQURciHfEbR5pwptsY1iNuEg0T3Ybx5yNMZsxo6jFdkBNnxoSXf_ecrJ4e3x-ei9e35cvD_WthuWrmQiKrHShppHWmVVbKda1YV9lGuratO2ib2tXOdsAta4WwAo3jloNtKqOE4efk-vA3pNnrZP2Mts8LJrSzZk0jRC0zdHOAcuOvHaZZD2EXc9mkKw5cVqxiIlPsQNkYUoro9Db6jYk_moHeK9aDzor1XrEGobPinLk7ZDBv_PYY9xVwstj5uG_QBf9P-hejTIP3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303821217</pqid></control><display><type>article</type><title>A high-order discontinuous Galerkin method for level set problems on polygonal meshes</title><source>Elsevier ScienceDirect Journals</source><creator>Lipnikov, Konstantin ; Morgan, Nathaniel</creator><creatorcontrib>Lipnikov, Konstantin ; Morgan, Nathaniel ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We propose and analyze discontinuous Galerkin schemes for solving level set equations on polygonal meshes. For linear equations, we assume that the velocity is given only on the cell surface. Velocity inside mesh cells is approximated using virtual element projectors on polynomial spaces. For nonlinear equations, we use the Taylor expansion to approximate the normalized solution gradient. We analyze the new schemes for a set of typical level set problems using square and polygonal meshes. The numerical results indicate great potential for using polygonal meshes in applications. •High-order DG schemes for level set equations on polygonal meshes.•New algorithms for velocity reconstruction inside mesh cells from boundary data.•Using Taylor expansion to calculate the normalized solution gradient.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2019.07.033</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Discontinuous Galerkin ; Galerkin method ; High-order ; Level set ; Linear equations ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Nonlinear equations ; Polygonal mesh ; Polygons ; Polynomials ; Projectors ; Taylor series ; Virtual element projectors</subject><ispartof>Journal of computational physics, 2019-11, Vol.397 (C), p.108834, Article 108834</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8e14f098a8cfa69c88b491d2c58f664d0654f4fcd03c1677c7eaf3c30c52a97a3</citedby><cites>FETCH-LOGICAL-c395t-8e14f098a8cfa69c88b491d2c58f664d0654f4fcd03c1677c7eaf3c30c52a97a3</cites><orcidid>0000-0002-7611-8449 ; 0000000214754626 ; 0000000276118449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2019.07.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipnikov, Konstantin</creatorcontrib><creatorcontrib>Morgan, Nathaniel</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>A high-order discontinuous Galerkin method for level set problems on polygonal meshes</title><title>Journal of computational physics</title><description>We propose and analyze discontinuous Galerkin schemes for solving level set equations on polygonal meshes. For linear equations, we assume that the velocity is given only on the cell surface. Velocity inside mesh cells is approximated using virtual element projectors on polynomial spaces. For nonlinear equations, we use the Taylor expansion to approximate the normalized solution gradient. We analyze the new schemes for a set of typical level set problems using square and polygonal meshes. The numerical results indicate great potential for using polygonal meshes in applications. •High-order DG schemes for level set equations on polygonal meshes.•New algorithms for velocity reconstruction inside mesh cells from boundary data.•Using Taylor expansion to calculate the normalized solution gradient.</description><subject>Computational physics</subject><subject>Discontinuous Galerkin</subject><subject>Galerkin method</subject><subject>High-order</subject><subject>Level set</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear equations</subject><subject>Polygonal mesh</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Projectors</subject><subject>Taylor series</subject><subject>Virtual element projectors</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEuXjB7BZMCc8x0lsiwkhKEhILHS2XOeZOKRxsVMk_j2uysz0lnOf7j2EXDEoGbD2digHuy0rYKoEUQLnR2TBQEFRCdYekwVAxQqlFDslZykNACCbWi7I6p72_qMvQuww0s4nG6bZT7uwS3RpRoyffqIbnPvQURciHfEbR5pwptsY1iNuEg0T3Ybx5yNMZsxo6jFdkBNnxoSXf_ecrJ4e3x-ei9e35cvD_WthuWrmQiKrHShppHWmVVbKda1YV9lGuratO2ib2tXOdsAta4WwAo3jloNtKqOE4efk-vA3pNnrZP2Mts8LJrSzZk0jRC0zdHOAcuOvHaZZD2EXc9mkKw5cVqxiIlPsQNkYUoro9Db6jYk_moHeK9aDzor1XrEGobPinLk7ZDBv_PYY9xVwstj5uG_QBf9P-hejTIP3</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Lipnikov, Konstantin</creator><creator>Morgan, Nathaniel</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7611-8449</orcidid><orcidid>https://orcid.org/0000000214754626</orcidid><orcidid>https://orcid.org/0000000276118449</orcidid></search><sort><creationdate>20191115</creationdate><title>A high-order discontinuous Galerkin method for level set problems on polygonal meshes</title><author>Lipnikov, Konstantin ; Morgan, Nathaniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8e14f098a8cfa69c88b491d2c58f664d0654f4fcd03c1677c7eaf3c30c52a97a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational physics</topic><topic>Discontinuous Galerkin</topic><topic>Galerkin method</topic><topic>High-order</topic><topic>Level set</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear equations</topic><topic>Polygonal mesh</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Projectors</topic><topic>Taylor series</topic><topic>Virtual element projectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipnikov, Konstantin</creatorcontrib><creatorcontrib>Morgan, Nathaniel</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipnikov, Konstantin</au><au>Morgan, Nathaniel</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-order discontinuous Galerkin method for level set problems on polygonal meshes</atitle><jtitle>Journal of computational physics</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>397</volume><issue>C</issue><spage>108834</spage><pages>108834-</pages><artnum>108834</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We propose and analyze discontinuous Galerkin schemes for solving level set equations on polygonal meshes. For linear equations, we assume that the velocity is given only on the cell surface. Velocity inside mesh cells is approximated using virtual element projectors on polynomial spaces. For nonlinear equations, we use the Taylor expansion to approximate the normalized solution gradient. We analyze the new schemes for a set of typical level set problems using square and polygonal meshes. The numerical results indicate great potential for using polygonal meshes in applications. •High-order DG schemes for level set equations on polygonal meshes.•New algorithms for velocity reconstruction inside mesh cells from boundary data.•Using Taylor expansion to calculate the normalized solution gradient.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2019.07.033</doi><orcidid>https://orcid.org/0000-0002-7611-8449</orcidid><orcidid>https://orcid.org/0000000214754626</orcidid><orcidid>https://orcid.org/0000000276118449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-11, Vol.397 (C), p.108834, Article 108834
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1557748
source Elsevier ScienceDirect Journals
subjects Computational physics
Discontinuous Galerkin
Galerkin method
High-order
Level set
Linear equations
Mathematical analysis
MATHEMATICS AND COMPUTING
Nonlinear equations
Polygonal mesh
Polygons
Polynomials
Projectors
Taylor series
Virtual element projectors
title A high-order discontinuous Galerkin method for level set problems on polygonal meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-order%20discontinuous%20Galerkin%20method%20for%20level%20set%20problems%20on%20polygonal%20meshes&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Lipnikov,%20Konstantin&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-11-15&rft.volume=397&rft.issue=C&rft.spage=108834&rft.pages=108834-&rft.artnum=108834&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2019.07.033&rft_dat=%3Cproquest_osti_%3E2303821217%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303821217&rft_id=info:pmid/&rft_els_id=S0021999119305182&rfr_iscdi=true