Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys

•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2019-07, Vol.155 (C), p.173-181
Hauptverfasser: Moorehead, Michael, Yu, Zefeng, Borrel, Léo, Hu, Jing, Cai, Zhonghou, Couet, Adrien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue C
container_start_page 173
container_title Corrosion science
container_volume 155
creator Moorehead, Michael
Yu, Zefeng
Borrel, Léo
Hu, Jing
Cai, Zhonghou
Couet, Adrien
description •Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics. Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.
doi_str_mv 10.1016/j.corsci.2019.04.017
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18316469</els_id><sourcerecordid>2244144172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw9Fz60zadq0F0EWv2DRi6J4CW06dbPuNmvSXdx_b0o9C4GEyTPDOw9j5wgJAuZXy0Rb57VJOGCZgEgA5QGbYCHLGESZH7IJAEJcpsX7MTvxfgkAgYUJe5vZ9cbRgjpvdhSZbke-N59Vb2wX2TbqFxQ5u6Lh_VRHoThU7I9pRuTLdNQb7Yf_DxcHpFqt7N6fsqO2Wnk6-7un7PXu9mX2EM-f7x9nN_NYC5B9LEXdZqWuZc7busmQ60bLssE6p7ZCyRvCNOd5JetUp1mJaSBQFHnLpa6wTNMpuxjn2hBbBQc96YW2XUe6V5hlMociQJcjtHH2exsWVEu7dV3IpTgXAsORPFBipLSz3jtq1caZdeX2CkENntVSjZ7V4FmBUMFzaLse2yisuTPkhhTUaWqMG0I01vw_4BeVAIek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244144172</pqid></control><display><type>article</type><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien</creator><creatorcontrib>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics. Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2019.04.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Zirconium ; B. Modeling studies ; B. TEM ; B. XANES ; C. Oxidation ; Corrosion mechanisms ; MATERIALS SCIENCE ; Niobium base alloys ; Nuclear fuel elements ; Nuclear fuels ; Oxidation ; Pressurized water reactors ; Reaction kinetics ; Transmission electron microscopy ; X ray absorption ; Zirconium alloys ; Zirconium base alloys</subject><ispartof>Corrosion science, 2019-07, Vol.155 (C), p.173-181</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</citedby><cites>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</cites><orcidid>0000-0003-1402-5949 ; 0000-0002-7330-5150 ; 0000-0001-8216-5244 ; 0000000314025949 ; 0000000273305150 ; 0000000182165244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2019.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moorehead, Michael</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Borrel, Léo</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Couet, Adrien</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><title>Corrosion science</title><description>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics. Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</description><subject>A. Zirconium</subject><subject>B. Modeling studies</subject><subject>B. TEM</subject><subject>B. XANES</subject><subject>C. Oxidation</subject><subject>Corrosion mechanisms</subject><subject>MATERIALS SCIENCE</subject><subject>Niobium base alloys</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Pressurized water reactors</subject><subject>Reaction kinetics</subject><subject>Transmission electron microscopy</subject><subject>X ray absorption</subject><subject>Zirconium alloys</subject><subject>Zirconium base alloys</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw9Fz60zadq0F0EWv2DRi6J4CW06dbPuNmvSXdx_b0o9C4GEyTPDOw9j5wgJAuZXy0Rb57VJOGCZgEgA5QGbYCHLGESZH7IJAEJcpsX7MTvxfgkAgYUJe5vZ9cbRgjpvdhSZbke-N59Vb2wX2TbqFxQ5u6Lh_VRHoThU7I9pRuTLdNQb7Yf_DxcHpFqt7N6fsqO2Wnk6-7un7PXu9mX2EM-f7x9nN_NYC5B9LEXdZqWuZc7busmQ60bLssE6p7ZCyRvCNOd5JetUp1mJaSBQFHnLpa6wTNMpuxjn2hBbBQc96YW2XUe6V5hlMociQJcjtHH2exsWVEu7dV3IpTgXAsORPFBipLSz3jtq1caZdeX2CkENntVSjZ7V4FmBUMFzaLse2yisuTPkhhTUaWqMG0I01vw_4BeVAIek</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Moorehead, Michael</creator><creator>Yu, Zefeng</creator><creator>Borrel, Léo</creator><creator>Hu, Jing</creator><creator>Cai, Zhonghou</creator><creator>Couet, Adrien</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1402-5949</orcidid><orcidid>https://orcid.org/0000-0002-7330-5150</orcidid><orcidid>https://orcid.org/0000-0001-8216-5244</orcidid><orcidid>https://orcid.org/0000000314025949</orcidid><orcidid>https://orcid.org/0000000273305150</orcidid><orcidid>https://orcid.org/0000000182165244</orcidid></search><sort><creationdate>20190715</creationdate><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><author>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Zirconium</topic><topic>B. Modeling studies</topic><topic>B. TEM</topic><topic>B. XANES</topic><topic>C. Oxidation</topic><topic>Corrosion mechanisms</topic><topic>MATERIALS SCIENCE</topic><topic>Niobium base alloys</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Pressurized water reactors</topic><topic>Reaction kinetics</topic><topic>Transmission electron microscopy</topic><topic>X ray absorption</topic><topic>Zirconium alloys</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moorehead, Michael</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Borrel, Léo</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Couet, Adrien</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moorehead, Michael</au><au>Yu, Zefeng</au><au>Borrel, Léo</au><au>Hu, Jing</au><au>Cai, Zhonghou</au><au>Couet, Adrien</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</atitle><jtitle>Corrosion science</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>155</volume><issue>C</issue><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics. Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2019.04.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1402-5949</orcidid><orcidid>https://orcid.org/0000-0002-7330-5150</orcidid><orcidid>https://orcid.org/0000-0001-8216-5244</orcidid><orcidid>https://orcid.org/0000000314025949</orcidid><orcidid>https://orcid.org/0000000273305150</orcidid><orcidid>https://orcid.org/0000000182165244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2019-07, Vol.155 (C), p.173-181
issn 0010-938X
1879-0496
language eng
recordid cdi_osti_scitechconnect_1557608
source Elsevier ScienceDirect Journals
subjects A. Zirconium
B. Modeling studies
B. TEM
B. XANES
C. Oxidation
Corrosion mechanisms
MATERIALS SCIENCE
Niobium base alloys
Nuclear fuel elements
Nuclear fuels
Oxidation
Pressurized water reactors
Reaction kinetics
Transmission electron microscopy
X ray absorption
Zirconium alloys
Zirconium base alloys
title Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20investigation%20of%20the%20role%20of%20Nb%20on%20the%20oxidation%20kinetics%20of%20Zr-Nb%20alloys&rft.jtitle=Corrosion%20science&rft.au=Moorehead,%20Michael&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-15&rft.volume=155&rft.issue=C&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2019.04.017&rft_dat=%3Cproquest_osti_%3E2244144172%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244144172&rft_id=info:pmid/&rft_els_id=S0010938X18316469&rfr_iscdi=true