Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys
•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2019-07, Vol.155 (C), p.173-181 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | C |
container_start_page | 173 |
container_title | Corrosion science |
container_volume | 155 |
creator | Moorehead, Michael Yu, Zefeng Borrel, Léo Hu, Jing Cai, Zhonghou Couet, Adrien |
description | •Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics.
Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert. |
doi_str_mv | 10.1016/j.corsci.2019.04.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18316469</els_id><sourcerecordid>2244144172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw9Fz60zadq0F0EWv2DRi6J4CW06dbPuNmvSXdx_b0o9C4GEyTPDOw9j5wgJAuZXy0Rb57VJOGCZgEgA5QGbYCHLGESZH7IJAEJcpsX7MTvxfgkAgYUJe5vZ9cbRgjpvdhSZbke-N59Vb2wX2TbqFxQ5u6Lh_VRHoThU7I9pRuTLdNQb7Yf_DxcHpFqt7N6fsqO2Wnk6-7un7PXu9mX2EM-f7x9nN_NYC5B9LEXdZqWuZc7busmQ60bLssE6p7ZCyRvCNOd5JetUp1mJaSBQFHnLpa6wTNMpuxjn2hBbBQc96YW2XUe6V5hlMociQJcjtHH2exsWVEu7dV3IpTgXAsORPFBipLSz3jtq1caZdeX2CkENntVSjZ7V4FmBUMFzaLse2yisuTPkhhTUaWqMG0I01vw_4BeVAIek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244144172</pqid></control><display><type>article</type><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien</creator><creatorcontrib>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics.
Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2019.04.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A. Zirconium ; B. Modeling studies ; B. TEM ; B. XANES ; C. Oxidation ; Corrosion mechanisms ; MATERIALS SCIENCE ; Niobium base alloys ; Nuclear fuel elements ; Nuclear fuels ; Oxidation ; Pressurized water reactors ; Reaction kinetics ; Transmission electron microscopy ; X ray absorption ; Zirconium alloys ; Zirconium base alloys</subject><ispartof>Corrosion science, 2019-07, Vol.155 (C), p.173-181</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</citedby><cites>FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</cites><orcidid>0000-0003-1402-5949 ; 0000-0002-7330-5150 ; 0000-0001-8216-5244 ; 0000000314025949 ; 0000000273305150 ; 0000000182165244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2019.04.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557608$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moorehead, Michael</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Borrel, Léo</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Couet, Adrien</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><title>Corrosion science</title><description>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics.
Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</description><subject>A. Zirconium</subject><subject>B. Modeling studies</subject><subject>B. TEM</subject><subject>B. XANES</subject><subject>C. Oxidation</subject><subject>Corrosion mechanisms</subject><subject>MATERIALS SCIENCE</subject><subject>Niobium base alloys</subject><subject>Nuclear fuel elements</subject><subject>Nuclear fuels</subject><subject>Oxidation</subject><subject>Pressurized water reactors</subject><subject>Reaction kinetics</subject><subject>Transmission electron microscopy</subject><subject>X ray absorption</subject><subject>Zirconium alloys</subject><subject>Zirconium base alloys</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw9Fz60zadq0F0EWv2DRi6J4CW06dbPuNmvSXdx_b0o9C4GEyTPDOw9j5wgJAuZXy0Rb57VJOGCZgEgA5QGbYCHLGESZH7IJAEJcpsX7MTvxfgkAgYUJe5vZ9cbRgjpvdhSZbke-N59Vb2wX2TbqFxQ5u6Lh_VRHoThU7I9pRuTLdNQb7Yf_DxcHpFqt7N6fsqO2Wnk6-7un7PXu9mX2EM-f7x9nN_NYC5B9LEXdZqWuZc7busmQ60bLssE6p7ZCyRvCNOd5JetUp1mJaSBQFHnLpa6wTNMpuxjn2hBbBQc96YW2XUe6V5hlMociQJcjtHH2exsWVEu7dV3IpTgXAsORPFBipLSz3jtq1caZdeX2CkENntVSjZ7V4FmBUMFzaLse2yisuTPkhhTUaWqMG0I01vw_4BeVAIek</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Moorehead, Michael</creator><creator>Yu, Zefeng</creator><creator>Borrel, Léo</creator><creator>Hu, Jing</creator><creator>Cai, Zhonghou</creator><creator>Couet, Adrien</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1402-5949</orcidid><orcidid>https://orcid.org/0000-0002-7330-5150</orcidid><orcidid>https://orcid.org/0000-0001-8216-5244</orcidid><orcidid>https://orcid.org/0000000314025949</orcidid><orcidid>https://orcid.org/0000000273305150</orcidid><orcidid>https://orcid.org/0000000182165244</orcidid></search><sort><creationdate>20190715</creationdate><title>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</title><author>Moorehead, Michael ; Yu, Zefeng ; Borrel, Léo ; Hu, Jing ; Cai, Zhonghou ; Couet, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-74bf59cb762fbd512cdc79d1b6efa172de13626a7b3c3591312c1486f27ca1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Zirconium</topic><topic>B. Modeling studies</topic><topic>B. TEM</topic><topic>B. XANES</topic><topic>C. Oxidation</topic><topic>Corrosion mechanisms</topic><topic>MATERIALS SCIENCE</topic><topic>Niobium base alloys</topic><topic>Nuclear fuel elements</topic><topic>Nuclear fuels</topic><topic>Oxidation</topic><topic>Pressurized water reactors</topic><topic>Reaction kinetics</topic><topic>Transmission electron microscopy</topic><topic>X ray absorption</topic><topic>Zirconium alloys</topic><topic>Zirconium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moorehead, Michael</creatorcontrib><creatorcontrib>Yu, Zefeng</creatorcontrib><creatorcontrib>Borrel, Léo</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Couet, Adrien</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moorehead, Michael</au><au>Yu, Zefeng</au><au>Borrel, Léo</au><au>Hu, Jing</au><au>Cai, Zhonghou</au><au>Couet, Adrien</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys</atitle><jtitle>Corrosion science</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>155</volume><issue>C</issue><spage>173</spage><epage>181</epage><pages>173-181</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Zr-Nb alloys show different oxidation kinetics due to Nb content and distribution.•Synchrotron is used to observe Nb oxidation states across metal/oxide interface.•Nb leeches out of β-Zr into the oxide rapidly upon oxidation of the precipitate.•C4 model is used to relate Nb content and distribution with oxidation kinetics.•Modeling and characterization reveal mechanism for different oxidation kinetics.
Waterside corrosion of zirconium alloys is currently the life-limiting degradation mechanism of fuel elements in pressurized-water reactor (PWR) systems. Today, PWRs use Zr-Nb fuel cladding designed to limit oxidation and hydrogen pickup. However, oxidation kinetics of Zr-Nb alloys can vary substantially depending on the Nb content and distribution, even in alloys of the same composition but different heat treatments. To elucidate the role of Nb on Zr-Nb oxidation kinetics and improve the fundamental understanding of Zr-Nb corrosion, nano-beam X-ray absorption near-edge spectroscopy (XANES), transmission electron microscopy (TEM), and application of the Coupled-Current Charge-Compensation (C4) Model have been performed in concert.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2019.04.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1402-5949</orcidid><orcidid>https://orcid.org/0000-0002-7330-5150</orcidid><orcidid>https://orcid.org/0000-0001-8216-5244</orcidid><orcidid>https://orcid.org/0000000314025949</orcidid><orcidid>https://orcid.org/0000000273305150</orcidid><orcidid>https://orcid.org/0000000182165244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2019-07, Vol.155 (C), p.173-181 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_osti_scitechconnect_1557608 |
source | Elsevier ScienceDirect Journals |
subjects | A. Zirconium B. Modeling studies B. TEM B. XANES C. Oxidation Corrosion mechanisms MATERIALS SCIENCE Niobium base alloys Nuclear fuel elements Nuclear fuels Oxidation Pressurized water reactors Reaction kinetics Transmission electron microscopy X ray absorption Zirconium alloys Zirconium base alloys |
title | Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20investigation%20of%20the%20role%20of%20Nb%20on%20the%20oxidation%20kinetics%20of%20Zr-Nb%20alloys&rft.jtitle=Corrosion%20science&rft.au=Moorehead,%20Michael&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-07-15&rft.volume=155&rft.issue=C&rft.spage=173&rft.epage=181&rft.pages=173-181&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2019.04.017&rft_dat=%3Cproquest_osti_%3E2244144172%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244144172&rft_id=info:pmid/&rft_els_id=S0010938X18316469&rfr_iscdi=true |