Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator

In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-09, Vol.341 (6153), p.1496-1499
Hauptverfasser: Okada, Yoshinori, Serbyn, Maksym, Lin, Hsin, Walkup, Daniel, Zhou, Wenwen, Dhital, Chetan, Neupane, Madhab, Xu, Suyang, Wang, Yung Jui, Sankar, R., Chou, Fangcheng, Bansil, Arun, Hasan, M. Zahid, Wilson, Stephen D., Fu, Liang, Madhavan, Vidya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 6153
container_start_page 1496
container_title Science (American Association for the Advancement of Science)
container_volume 341
creator Okada, Yoshinori
Serbyn, Maksym
Lin, Hsin
Walkup, Daniel
Zhou, Wenwen
Dhital, Chetan
Neupane, Madhab
Xu, Suyang
Wang, Yung Jui
Sankar, R.
Chou, Fangcheng
Bansil, Arun
Hasan, M. Zahid
Wilson, Stephen D.
Fu, Liang
Madhavan, Vidya
description In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.
doi_str_mv 10.1126/science.1239451
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42619410</jstor_id><sourcerecordid>42619410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</originalsourceid><addsrcrecordid>eNqF0c9PFDEUB_DGSGRFz540EwwJl4H-nGmPZAUlATnIvel0Wu1mtl36Zkz47-0yIyZeODV5_fS1r1-EPhB8RghtzsEGF607I5QpLsgrtCJYiVpRzF6jFcasqSVuxSF6C7DBuOwp9gYdFi2VEnyF9F0HLv82Y0ixSr76ErKx1ffUu-oq5e1cN7Gvbg1AdWEfpgDhqRhKvbpPuzSkn8GaoVrnRxjNMIToqusI02DGlN-hA28GcO-X9Qj9uLq8X3-rb-6-Xq8vbmorOB9r2RJPMKcSG0kplQrLTjIre8q86mkZoe2YbFrZe-sFkb1qBPONl465TrEjdDx3TTAGXT5ldPaXTTE6O2oiRCuUKOh0RrucHiYHo94GsG4YTHRpgr1TjSSY4JcpZ-VFSjFa6Of_6CZNOZZZn1RpSsX-7vNZ2ZwAsvN6l8PW5EdNsN4nqZck9ZJkOfFp6Tt1W9c_-7_RFXCyAAPl-3020Qb451rVCsplcR9nt4GSx_M-pw1RvMz6BzkBrwU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437155255</pqid></control><display><type>article</type><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya</creator><creatorcontrib>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1239451</identifier><identifier>PMID: 23989954</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atomic spectra ; Carriers ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystal structure ; Crystallization ; Dispersions ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Fermi surfaces ; Fermions ; Insulators ; Line spectra ; Magnetic fields ; Magnetic spectroscopy ; Mathematical surfaces ; Physics ; Saddle points ; Spectral energy distribution ; Surface and interface electron states ; Surface chemistry ; Surface states, band structure, electron density of states ; Symmetry ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1496-1499</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</citedby><cites>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42619410$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42619410$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27975248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Yoshinori</creatorcontrib><creatorcontrib>Serbyn, Maksym</creatorcontrib><creatorcontrib>Lin, Hsin</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Dhital, Chetan</creatorcontrib><creatorcontrib>Neupane, Madhab</creatorcontrib><creatorcontrib>Xu, Suyang</creatorcontrib><creatorcontrib>Wang, Yung Jui</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Chou, Fangcheng</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Fu, Liang</creatorcontrib><creatorcontrib>Madhavan, Vidya</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</description><subject>Atomic spectra</subject><subject>Carriers</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Dispersions</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Fermions</subject><subject>Insulators</subject><subject>Line spectra</subject><subject>Magnetic fields</subject><subject>Magnetic spectroscopy</subject><subject>Mathematical surfaces</subject><subject>Physics</subject><subject>Saddle points</subject><subject>Spectral energy distribution</subject><subject>Surface and interface electron states</subject><subject>Surface chemistry</subject><subject>Surface states, band structure, electron density of states</subject><subject>Symmetry</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c9PFDEUB_DGSGRFz540EwwJl4H-nGmPZAUlATnIvel0Wu1mtl36Zkz47-0yIyZeODV5_fS1r1-EPhB8RghtzsEGF607I5QpLsgrtCJYiVpRzF6jFcasqSVuxSF6C7DBuOwp9gYdFi2VEnyF9F0HLv82Y0ixSr76ErKx1ffUu-oq5e1cN7Gvbg1AdWEfpgDhqRhKvbpPuzSkn8GaoVrnRxjNMIToqusI02DGlN-hA28GcO-X9Qj9uLq8X3-rb-6-Xq8vbmorOB9r2RJPMKcSG0kplQrLTjIre8q86mkZoe2YbFrZe-sFkb1qBPONl465TrEjdDx3TTAGXT5ldPaXTTE6O2oiRCuUKOh0RrucHiYHo94GsG4YTHRpgr1TjSSY4JcpZ-VFSjFa6Of_6CZNOZZZn1RpSsX-7vNZ2ZwAsvN6l8PW5EdNsN4nqZck9ZJkOfFp6Tt1W9c_-7_RFXCyAAPl-3020Qb451rVCsplcR9nt4GSx_M-pw1RvMz6BzkBrwU</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Okada, Yoshinori</creator><creator>Serbyn, Maksym</creator><creator>Lin, Hsin</creator><creator>Walkup, Daniel</creator><creator>Zhou, Wenwen</creator><creator>Dhital, Chetan</creator><creator>Neupane, Madhab</creator><creator>Xu, Suyang</creator><creator>Wang, Yung Jui</creator><creator>Sankar, R.</creator><creator>Chou, Fangcheng</creator><creator>Bansil, Arun</creator><creator>Hasan, M. Zahid</creator><creator>Wilson, Stephen D.</creator><creator>Fu, Liang</creator><creator>Madhavan, Vidya</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20130927</creationdate><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><author>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic spectra</topic><topic>Carriers</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Dispersions</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Fermions</topic><topic>Insulators</topic><topic>Line spectra</topic><topic>Magnetic fields</topic><topic>Magnetic spectroscopy</topic><topic>Mathematical surfaces</topic><topic>Physics</topic><topic>Saddle points</topic><topic>Spectral energy distribution</topic><topic>Surface and interface electron states</topic><topic>Surface chemistry</topic><topic>Surface states, band structure, electron density of states</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Yoshinori</creatorcontrib><creatorcontrib>Serbyn, Maksym</creatorcontrib><creatorcontrib>Lin, Hsin</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Dhital, Chetan</creatorcontrib><creatorcontrib>Neupane, Madhab</creatorcontrib><creatorcontrib>Xu, Suyang</creatorcontrib><creatorcontrib>Wang, Yung Jui</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Chou, Fangcheng</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Fu, Liang</creatorcontrib><creatorcontrib>Madhavan, Vidya</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Yoshinori</au><au>Serbyn, Maksym</au><au>Lin, Hsin</au><au>Walkup, Daniel</au><au>Zhou, Wenwen</au><au>Dhital, Chetan</au><au>Neupane, Madhab</au><au>Xu, Suyang</au><au>Wang, Yung Jui</au><au>Sankar, R.</au><au>Chou, Fangcheng</au><au>Bansil, Arun</au><au>Hasan, M. Zahid</au><au>Wilson, Stephen D.</au><au>Fu, Liang</au><au>Madhavan, Vidya</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>341</volume><issue>6153</issue><spage>1496</spage><epage>1499</epage><pages>1496-1499</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23989954</pmid><doi>10.1126/science.1239451</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1496-1499
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1557595
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Atomic spectra
Carriers
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Crystal structure
Crystallization
Dispersions
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Fermi surfaces
Fermions
Insulators
Line spectra
Magnetic fields
Magnetic spectroscopy
Mathematical surfaces
Physics
Saddle points
Spectral energy distribution
Surface and interface electron states
Surface chemistry
Surface states, band structure, electron density of states
Symmetry
Topology
title Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Dirac%20Node%20Formation%20and%20Mass%20Acquisition%20in%20a%20Topological%20Crystalline%20Insulator&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Okada,%20Yoshinori&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2013-09-27&rft.volume=341&rft.issue=6153&rft.spage=1496&rft.epage=1499&rft.pages=1496-1499&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1239451&rft_dat=%3Cjstor_osti_%3E42619410%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437155255&rft_id=info:pmid/23989954&rft_jstor_id=42619410&rfr_iscdi=true