Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator
In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling micro...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-09, Vol.341 (6153), p.1496-1499 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 6153 |
container_start_page | 1496 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 341 |
creator | Okada, Yoshinori Serbyn, Maksym Lin, Hsin Walkup, Daniel Zhou, Wenwen Dhital, Chetan Neupane, Madhab Xu, Suyang Wang, Yung Jui Sankar, R. Chou, Fangcheng Bansil, Arun Hasan, M. Zahid Wilson, Stephen D. Fu, Liang Madhavan, Vidya |
description | In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs. |
doi_str_mv | 10.1126/science.1239451 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42619410</jstor_id><sourcerecordid>42619410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</originalsourceid><addsrcrecordid>eNqF0c9PFDEUB_DGSGRFz540EwwJl4H-nGmPZAUlATnIvel0Wu1mtl36Zkz47-0yIyZeODV5_fS1r1-EPhB8RghtzsEGF607I5QpLsgrtCJYiVpRzF6jFcasqSVuxSF6C7DBuOwp9gYdFi2VEnyF9F0HLv82Y0ixSr76ErKx1ffUu-oq5e1cN7Gvbg1AdWEfpgDhqRhKvbpPuzSkn8GaoVrnRxjNMIToqusI02DGlN-hA28GcO-X9Qj9uLq8X3-rb-6-Xq8vbmorOB9r2RJPMKcSG0kplQrLTjIre8q86mkZoe2YbFrZe-sFkb1qBPONl465TrEjdDx3TTAGXT5ldPaXTTE6O2oiRCuUKOh0RrucHiYHo94GsG4YTHRpgr1TjSSY4JcpZ-VFSjFa6Of_6CZNOZZZn1RpSsX-7vNZ2ZwAsvN6l8PW5EdNsN4nqZck9ZJkOfFp6Tt1W9c_-7_RFXCyAAPl-3020Qb451rVCsplcR9nt4GSx_M-pw1RvMz6BzkBrwU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437155255</pqid></control><display><type>article</type><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya</creator><creatorcontrib>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1239451</identifier><identifier>PMID: 23989954</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atomic spectra ; Carriers ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystal structure ; Crystallization ; Dispersions ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Fermi surfaces ; Fermions ; Insulators ; Line spectra ; Magnetic fields ; Magnetic spectroscopy ; Mathematical surfaces ; Physics ; Saddle points ; Spectral energy distribution ; Surface and interface electron states ; Surface chemistry ; Surface states, band structure, electron density of states ; Symmetry ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1496-1499</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</citedby><cites>FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42619410$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42619410$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975248$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Yoshinori</creatorcontrib><creatorcontrib>Serbyn, Maksym</creatorcontrib><creatorcontrib>Lin, Hsin</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Dhital, Chetan</creatorcontrib><creatorcontrib>Neupane, Madhab</creatorcontrib><creatorcontrib>Xu, Suyang</creatorcontrib><creatorcontrib>Wang, Yung Jui</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Chou, Fangcheng</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Fu, Liang</creatorcontrib><creatorcontrib>Madhavan, Vidya</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</description><subject>Atomic spectra</subject><subject>Carriers</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Dispersions</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fermi surfaces</subject><subject>Fermions</subject><subject>Insulators</subject><subject>Line spectra</subject><subject>Magnetic fields</subject><subject>Magnetic spectroscopy</subject><subject>Mathematical surfaces</subject><subject>Physics</subject><subject>Saddle points</subject><subject>Spectral energy distribution</subject><subject>Surface and interface electron states</subject><subject>Surface chemistry</subject><subject>Surface states, band structure, electron density of states</subject><subject>Symmetry</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0c9PFDEUB_DGSGRFz540EwwJl4H-nGmPZAUlATnIvel0Wu1mtl36Zkz47-0yIyZeODV5_fS1r1-EPhB8RghtzsEGF607I5QpLsgrtCJYiVpRzF6jFcasqSVuxSF6C7DBuOwp9gYdFi2VEnyF9F0HLv82Y0ixSr76ErKx1ffUu-oq5e1cN7Gvbg1AdWEfpgDhqRhKvbpPuzSkn8GaoVrnRxjNMIToqusI02DGlN-hA28GcO-X9Qj9uLq8X3-rb-6-Xq8vbmorOB9r2RJPMKcSG0kplQrLTjIre8q86mkZoe2YbFrZe-sFkb1qBPONl465TrEjdDx3TTAGXT5ldPaXTTE6O2oiRCuUKOh0RrucHiYHo94GsG4YTHRpgr1TjSSY4JcpZ-VFSjFa6Of_6CZNOZZZn1RpSsX-7vNZ2ZwAsvN6l8PW5EdNsN4nqZck9ZJkOfFp6Tt1W9c_-7_RFXCyAAPl-3020Qb451rVCsplcR9nt4GSx_M-pw1RvMz6BzkBrwU</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Okada, Yoshinori</creator><creator>Serbyn, Maksym</creator><creator>Lin, Hsin</creator><creator>Walkup, Daniel</creator><creator>Zhou, Wenwen</creator><creator>Dhital, Chetan</creator><creator>Neupane, Madhab</creator><creator>Xu, Suyang</creator><creator>Wang, Yung Jui</creator><creator>Sankar, R.</creator><creator>Chou, Fangcheng</creator><creator>Bansil, Arun</creator><creator>Hasan, M. Zahid</creator><creator>Wilson, Stephen D.</creator><creator>Fu, Liang</creator><creator>Madhavan, Vidya</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20130927</creationdate><title>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</title><author>Okada, Yoshinori ; Serbyn, Maksym ; Lin, Hsin ; Walkup, Daniel ; Zhou, Wenwen ; Dhital, Chetan ; Neupane, Madhab ; Xu, Suyang ; Wang, Yung Jui ; Sankar, R. ; Chou, Fangcheng ; Bansil, Arun ; Hasan, M. Zahid ; Wilson, Stephen D. ; Fu, Liang ; Madhavan, Vidya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-871f104280a82228908b83c8d23f9d20757b38678dfcf518d9653f6f8e3eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic spectra</topic><topic>Carriers</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Dispersions</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fermi surfaces</topic><topic>Fermions</topic><topic>Insulators</topic><topic>Line spectra</topic><topic>Magnetic fields</topic><topic>Magnetic spectroscopy</topic><topic>Mathematical surfaces</topic><topic>Physics</topic><topic>Saddle points</topic><topic>Spectral energy distribution</topic><topic>Surface and interface electron states</topic><topic>Surface chemistry</topic><topic>Surface states, band structure, electron density of states</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Yoshinori</creatorcontrib><creatorcontrib>Serbyn, Maksym</creatorcontrib><creatorcontrib>Lin, Hsin</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Zhou, Wenwen</creatorcontrib><creatorcontrib>Dhital, Chetan</creatorcontrib><creatorcontrib>Neupane, Madhab</creatorcontrib><creatorcontrib>Xu, Suyang</creatorcontrib><creatorcontrib>Wang, Yung Jui</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Chou, Fangcheng</creatorcontrib><creatorcontrib>Bansil, Arun</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Fu, Liang</creatorcontrib><creatorcontrib>Madhavan, Vidya</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Yoshinori</au><au>Serbyn, Maksym</au><au>Lin, Hsin</au><au>Walkup, Daniel</au><au>Zhou, Wenwen</au><au>Dhital, Chetan</au><au>Neupane, Madhab</au><au>Xu, Suyang</au><au>Wang, Yung Jui</au><au>Sankar, R.</au><au>Chou, Fangcheng</au><au>Bansil, Arun</au><au>Hasan, M. Zahid</au><au>Wilson, Stephen D.</au><au>Fu, Liang</au><au>Madhavan, Vidya</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>341</volume><issue>6153</issue><spage>1496</spage><epage>1499</epage><pages>1496-1499</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>In topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with distinct characteristics. The breaking of crystal symmetry in TCIs is predicted to impart mass to the massless Dirac fermions. Here, we report high-resolution scanning tunneling microscopy studies of a TCI, Pb 1-x Sn x Se that reveal the coexistence of zero-mass Dirac fermions protected by crystal symmetry with massive Dirac fermions consistent with crystal symmetry breaking. In addition, we show two distinct regimes of the Fermi surface topology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>23989954</pmid><doi>10.1126/science.1239451</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1496-1499 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1557595 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atomic spectra Carriers CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Condensed matter: electronic structure, electrical, magnetic, and optical properties Crystal structure Crystallization Dispersions Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Fermi surfaces Fermions Insulators Line spectra Magnetic fields Magnetic spectroscopy Mathematical surfaces Physics Saddle points Spectral energy distribution Surface and interface electron states Surface chemistry Surface states, band structure, electron density of states Symmetry Topology |
title | Observation of Dirac Node Formation and Mass Acquisition in a Topological Crystalline Insulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20Dirac%20Node%20Formation%20and%20Mass%20Acquisition%20in%20a%20Topological%20Crystalline%20Insulator&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Okada,%20Yoshinori&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2013-09-27&rft.volume=341&rft.issue=6153&rft.spage=1496&rft.epage=1499&rft.pages=1496-1499&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1239451&rft_dat=%3Cjstor_osti_%3E42619410%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437155255&rft_id=info:pmid/23989954&rft_jstor_id=42619410&rfr_iscdi=true |