Autotuning algorithmic choice for input sensitivity

A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2015-08, Vol.50 (6), p.379-390
Hauptverfasser: Ding, Yufei, Ansel, Jason, Veeramachaneni, Kalyan, Shen, Xipeng, O’Reilly, Una-May, Amarasinghe, Saman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 6
container_start_page 379
container_title SIGPLAN notices
container_volume 50
creator Ding, Yufei
Ansel, Jason
Veeramachaneni, Kalyan
Shen, Xipeng
O’Reilly, Una-May
Amarasinghe, Saman
description A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.
doi_str_mv 10.1145/2813885.2737969
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2813885_2737969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKtrt4P7afPykkmyLEWtUHCj6zDzJmkj7aRMUqF_b6Vd3c3hwjmMPQOfAUg1FwbQGDUTGrVt7A2bgFKmBmj4LZtwbEQNKPk9e8j5h3OOXJgJw8WxpHIc4rCp2t0mjbFs95Eq2qZIvgpprOJwOJYq-yHHEn9jOT2yu9Dusn-67pR9v71-LVf1-vP9Y7lY1yTQltogyb6n1mDXSSU7IcEjQvDWdsJKUDo0JgSpdC_RWCCvucKmB90DaaVxyl4uvymX6DLF4mlLaRg8FXeW08rwMzS_QDSmnEcf3GGM-3Y8OeDuP4y7hnHXMPgHo61Usg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Autotuning algorithmic choice for input sensitivity</title><source>ACM Digital Library</source><creator>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman</creator><creatorcontrib>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</description><identifier>ISSN: 0362-1340</identifier><identifier>EISSN: 1558-1160</identifier><identifier>DOI: 10.1145/2813885.2737969</identifier><language>eng</language><publisher>United States: ACM</publisher><subject>Algorithmic Optimization ; Autotuning ; In-put Adaptive ; Input Sensitivity ; MATHEMATICS AND COMPUTING ; Petabricks ; Two-level Input Learning</subject><ispartof>SIGPLAN notices, 2015-08, Vol.50 (6), p.379-390</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</citedby><cites>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557580$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Ansel, Jason</creatorcontrib><creatorcontrib>Veeramachaneni, Kalyan</creatorcontrib><creatorcontrib>Shen, Xipeng</creatorcontrib><creatorcontrib>O’Reilly, Una-May</creatorcontrib><creatorcontrib>Amarasinghe, Saman</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Autotuning algorithmic choice for input sensitivity</title><title>SIGPLAN notices</title><description>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</description><subject>Algorithmic Optimization</subject><subject>Autotuning</subject><subject>In-put Adaptive</subject><subject>Input Sensitivity</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Petabricks</subject><subject>Two-level Input Learning</subject><issn>0362-1340</issn><issn>1558-1160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKtrt4P7afPykkmyLEWtUHCj6zDzJmkj7aRMUqF_b6Vd3c3hwjmMPQOfAUg1FwbQGDUTGrVt7A2bgFKmBmj4LZtwbEQNKPk9e8j5h3OOXJgJw8WxpHIc4rCp2t0mjbFs95Eq2qZIvgpprOJwOJYq-yHHEn9jOT2yu9Dusn-67pR9v71-LVf1-vP9Y7lY1yTQltogyb6n1mDXSSU7IcEjQvDWdsJKUDo0JgSpdC_RWCCvucKmB90DaaVxyl4uvymX6DLF4mlLaRg8FXeW08rwMzS_QDSmnEcf3GGM-3Y8OeDuP4y7hnHXMPgHo61Usg</recordid><startdate>20150807</startdate><enddate>20150807</enddate><creator>Ding, Yufei</creator><creator>Ansel, Jason</creator><creator>Veeramachaneni, Kalyan</creator><creator>Shen, Xipeng</creator><creator>O’Reilly, Una-May</creator><creator>Amarasinghe, Saman</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150807</creationdate><title>Autotuning algorithmic choice for input sensitivity</title><author>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithmic Optimization</topic><topic>Autotuning</topic><topic>In-put Adaptive</topic><topic>Input Sensitivity</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Petabricks</topic><topic>Two-level Input Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Ansel, Jason</creatorcontrib><creatorcontrib>Veeramachaneni, Kalyan</creatorcontrib><creatorcontrib>Shen, Xipeng</creatorcontrib><creatorcontrib>O’Reilly, Una-May</creatorcontrib><creatorcontrib>Amarasinghe, Saman</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>SIGPLAN notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yufei</au><au>Ansel, Jason</au><au>Veeramachaneni, Kalyan</au><au>Shen, Xipeng</au><au>O’Reilly, Una-May</au><au>Amarasinghe, Saman</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotuning algorithmic choice for input sensitivity</atitle><jtitle>SIGPLAN notices</jtitle><date>2015-08-07</date><risdate>2015</risdate><volume>50</volume><issue>6</issue><spage>379</spage><epage>390</epage><pages>379-390</pages><issn>0362-1340</issn><eissn>1558-1160</eissn><abstract>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</abstract><cop>United States</cop><pub>ACM</pub><doi>10.1145/2813885.2737969</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-1340
ispartof SIGPLAN notices, 2015-08, Vol.50 (6), p.379-390
issn 0362-1340
1558-1160
language eng
recordid cdi_osti_scitechconnect_1557580
source ACM Digital Library
subjects Algorithmic Optimization
Autotuning
In-put Adaptive
Input Sensitivity
MATHEMATICS AND COMPUTING
Petabricks
Two-level Input Learning
title Autotuning algorithmic choice for input sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotuning%20algorithmic%20choice%20for%20input%20sensitivity&rft.jtitle=SIGPLAN%20notices&rft.au=Ding,%20Yufei&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2015-08-07&rft.volume=50&rft.issue=6&rft.spage=379&rft.epage=390&rft.pages=379-390&rft.issn=0362-1340&rft.eissn=1558-1160&rft_id=info:doi/10.1145/2813885.2737969&rft_dat=%3Ccrossref_osti_%3E10_1145_2813885_2737969%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true