Autotuning algorithmic choice for input sensitivity
A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorith...
Gespeichert in:
Veröffentlicht in: | SIGPLAN notices 2015-08, Vol.50 (6), p.379-390 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 6 |
container_start_page | 379 |
container_title | SIGPLAN notices |
container_volume | 50 |
creator | Ding, Yufei Ansel, Jason Veeramachaneni, Kalyan Shen, Xipeng O’Reilly, Una-May Amarasinghe, Saman |
description | A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations. |
doi_str_mv | 10.1145/2813885.2737969 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_2813885_2737969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKtrt4P7afPykkmyLEWtUHCj6zDzJmkj7aRMUqF_b6Vd3c3hwjmMPQOfAUg1FwbQGDUTGrVt7A2bgFKmBmj4LZtwbEQNKPk9e8j5h3OOXJgJw8WxpHIc4rCp2t0mjbFs95Eq2qZIvgpprOJwOJYq-yHHEn9jOT2yu9Dusn-67pR9v71-LVf1-vP9Y7lY1yTQltogyb6n1mDXSSU7IcEjQvDWdsJKUDo0JgSpdC_RWCCvucKmB90DaaVxyl4uvymX6DLF4mlLaRg8FXeW08rwMzS_QDSmnEcf3GGM-3Y8OeDuP4y7hnHXMPgHo61Usg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Autotuning algorithmic choice for input sensitivity</title><source>ACM Digital Library</source><creator>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman</creator><creatorcontrib>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</description><identifier>ISSN: 0362-1340</identifier><identifier>EISSN: 1558-1160</identifier><identifier>DOI: 10.1145/2813885.2737969</identifier><language>eng</language><publisher>United States: ACM</publisher><subject>Algorithmic Optimization ; Autotuning ; In-put Adaptive ; Input Sensitivity ; MATHEMATICS AND COMPUTING ; Petabricks ; Two-level Input Learning</subject><ispartof>SIGPLAN notices, 2015-08, Vol.50 (6), p.379-390</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</citedby><cites>FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557580$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Ansel, Jason</creatorcontrib><creatorcontrib>Veeramachaneni, Kalyan</creatorcontrib><creatorcontrib>Shen, Xipeng</creatorcontrib><creatorcontrib>O’Reilly, Una-May</creatorcontrib><creatorcontrib>Amarasinghe, Saman</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Autotuning algorithmic choice for input sensitivity</title><title>SIGPLAN notices</title><description>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</description><subject>Algorithmic Optimization</subject><subject>Autotuning</subject><subject>In-put Adaptive</subject><subject>Input Sensitivity</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Petabricks</subject><subject>Two-level Input Learning</subject><issn>0362-1340</issn><issn>1558-1160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKtrt4P7afPykkmyLEWtUHCj6zDzJmkj7aRMUqF_b6Vd3c3hwjmMPQOfAUg1FwbQGDUTGrVt7A2bgFKmBmj4LZtwbEQNKPk9e8j5h3OOXJgJw8WxpHIc4rCp2t0mjbFs95Eq2qZIvgpprOJwOJYq-yHHEn9jOT2yu9Dusn-67pR9v71-LVf1-vP9Y7lY1yTQltogyb6n1mDXSSU7IcEjQvDWdsJKUDo0JgSpdC_RWCCvucKmB90DaaVxyl4uvymX6DLF4mlLaRg8FXeW08rwMzS_QDSmnEcf3GGM-3Y8OeDuP4y7hnHXMPgHo61Usg</recordid><startdate>20150807</startdate><enddate>20150807</enddate><creator>Ding, Yufei</creator><creator>Ansel, Jason</creator><creator>Veeramachaneni, Kalyan</creator><creator>Shen, Xipeng</creator><creator>O’Reilly, Una-May</creator><creator>Amarasinghe, Saman</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150807</creationdate><title>Autotuning algorithmic choice for input sensitivity</title><author>Ding, Yufei ; Ansel, Jason ; Veeramachaneni, Kalyan ; Shen, Xipeng ; O’Reilly, Una-May ; Amarasinghe, Saman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-83c4ddca83bb454b241e331fe99b294157f68ff457d43891ce70536d17d1c7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithmic Optimization</topic><topic>Autotuning</topic><topic>In-put Adaptive</topic><topic>Input Sensitivity</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Petabricks</topic><topic>Two-level Input Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yufei</creatorcontrib><creatorcontrib>Ansel, Jason</creatorcontrib><creatorcontrib>Veeramachaneni, Kalyan</creatorcontrib><creatorcontrib>Shen, Xipeng</creatorcontrib><creatorcontrib>O’Reilly, Una-May</creatorcontrib><creatorcontrib>Amarasinghe, Saman</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>SIGPLAN notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yufei</au><au>Ansel, Jason</au><au>Veeramachaneni, Kalyan</au><au>Shen, Xipeng</au><au>O’Reilly, Una-May</au><au>Amarasinghe, Saman</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotuning algorithmic choice for input sensitivity</atitle><jtitle>SIGPLAN notices</jtitle><date>2015-08-07</date><risdate>2015</risdate><volume>50</volume><issue>6</issue><spage>379</spage><epage>390</epage><pages>379-390</pages><issn>0362-1340</issn><eissn>1558-1160</eissn><abstract>A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.</abstract><cop>United States</cop><pub>ACM</pub><doi>10.1145/2813885.2737969</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-1340 |
ispartof | SIGPLAN notices, 2015-08, Vol.50 (6), p.379-390 |
issn | 0362-1340 1558-1160 |
language | eng |
recordid | cdi_osti_scitechconnect_1557580 |
source | ACM Digital Library |
subjects | Algorithmic Optimization Autotuning In-put Adaptive Input Sensitivity MATHEMATICS AND COMPUTING Petabricks Two-level Input Learning |
title | Autotuning algorithmic choice for input sensitivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotuning%20algorithmic%20choice%20for%20input%20sensitivity&rft.jtitle=SIGPLAN%20notices&rft.au=Ding,%20Yufei&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2015-08-07&rft.volume=50&rft.issue=6&rft.spage=379&rft.epage=390&rft.pages=379-390&rft.issn=0362-1340&rft.eissn=1558-1160&rft_id=info:doi/10.1145/2813885.2737969&rft_dat=%3Ccrossref_osti_%3E10_1145_2813885_2737969%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |