Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy
We employ tip-enhanced Raman spectroscopy (TERS) to study model amorphous silicon (a-Si) thin film anodes galvanostatically cycled for different numbers. For the 1× cycled a-Si, TERS shows good correlation between solid electrolyte interphase (SEI) topography and chemical mapping, corresponding to d...
Gespeichert in:
Veröffentlicht in: | Joule 2019-08, Vol.3 (8), p.2001-2019 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2019 |
---|---|
container_issue | 8 |
container_start_page | 2001 |
container_title | Joule |
container_volume | 3 |
creator | Nanda, Jagjit Yang, Guang Hou, Tingzheng Voylov, Dmitry N. Li, Xin Ruther, Rose E. Naguib, Michael Persson, Kristin Veith, Gabriel M. Sokolov, Alexei P. |
description | We employ tip-enhanced Raman spectroscopy (TERS) to study model amorphous silicon (a-Si) thin film anodes galvanostatically cycled for different numbers. For the 1× cycled a-Si, TERS shows good correlation between solid electrolyte interphase (SEI) topography and chemical mapping, corresponding to distribution of lithium ethylene dicarbonate (LEDC) and poly (ethylene oxide) (PEO)-like oligomer species. Subsequent electrochemical cycling makes the SEI relatively thick and rough with the chemical composition heavily dominated by LEDC monomer-dimer for 5× cycled a-Si. For 20× cycled a-Si, the TERS signal is dominated by carboxylate (RCO2Li) compounds of various conformations and fluorinated species (LixPOyFz). A nanomosaic-multilayer hybrid SEI model on top of the a-Si anode is proposed. The significance of this work is applicable not only to silicon, where SEI plays a dominant role in determining the cycle life performance and reversibility, but also for a number of other relevant battery chemistries such as Na-ion and multivalent redox systems.
[Display omitted]
•TERS measures the topography and chemical heterogeneity of SEI on a-Si at nanoscale•SEI composition of SEI constantly evolves with progressive galvanostatic cycling•TERS can provide molecular level conformational changes•A nanomosaic-multilayer model for SEI on a-Si is proposed
Solid electrolyte interphase (SEI) is considered the key component responsible for the safety, performance, and life for most secondary batteries. Despite this, a unified picture encompassing its chemical composition, distribution of phases, and topography at nanoscale is still lacking. We report the first observation of nanoscale chemical and topographical heterogeneity of a SEI formed on amorphous silicon (a-Si) using tip-enhanced Raman spectroscopy (TERS). Unlike ensemble averaged and relatively bulk sensitive vibrational spectroscopic techniques such as Raman and Fourier-transform infrared (FTIR), TERS is sensitive to dynamical evolution of the SEI at a lateral resolution of |
doi_str_mv | 10.1016/j.joule.2019.05.026 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1557528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2542435119302697</els_id><sourcerecordid>S2542435119302697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-1ee0e8ad9ab3967c087ff06402635611b7b3c27a3bf665de4bf64ec2f75762443</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpL2Cx2BNsx3bSgQFVhVaqQKLtbDnOpXGV2lEcKuXfk7QMTEx3w3fv3nsIPVISU0Ll8zE--u8aYkboPCYiJkzeoAkTnEU8EfT2z36PZiEcCRlIljGZTFC9d60-Q23dAXcV4A_tfDC6BryCDlp_AAe267Ev8dbXtsDLGkzX-rrvAK_dgDSVDoD3YVTY2SZauko7AwX-0ift8La58MH4pn9Ad6WuA8x-5xTt35a7xSrafL6vF6-byHBOu4gCEMh0Mdd5MpepIVlalkTyIVgiJKV5mieGpTrJSylFAXyYHAwrU5FKxnkyRU9XXR86q4KxHZjKeOcGK4oKkQqWDVByhczgLrRQqqa1J932ihI1FquO6lKsGotVRKjx_xS9XK9g8H-20I7yMOa17aheePvv_Q9XU4Oo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nanda, Jagjit ; Yang, Guang ; Hou, Tingzheng ; Voylov, Dmitry N. ; Li, Xin ; Ruther, Rose E. ; Naguib, Michael ; Persson, Kristin ; Veith, Gabriel M. ; Sokolov, Alexei P.</creator><creatorcontrib>Nanda, Jagjit ; Yang, Guang ; Hou, Tingzheng ; Voylov, Dmitry N. ; Li, Xin ; Ruther, Rose E. ; Naguib, Michael ; Persson, Kristin ; Veith, Gabriel M. ; Sokolov, Alexei P. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>We employ tip-enhanced Raman spectroscopy (TERS) to study model amorphous silicon (a-Si) thin film anodes galvanostatically cycled for different numbers. For the 1× cycled a-Si, TERS shows good correlation between solid electrolyte interphase (SEI) topography and chemical mapping, corresponding to distribution of lithium ethylene dicarbonate (LEDC) and poly (ethylene oxide) (PEO)-like oligomer species. Subsequent electrochemical cycling makes the SEI relatively thick and rough with the chemical composition heavily dominated by LEDC monomer-dimer for 5× cycled a-Si. For 20× cycled a-Si, the TERS signal is dominated by carboxylate (RCO2Li) compounds of various conformations and fluorinated species (LixPOyFz). A nanomosaic-multilayer hybrid SEI model on top of the a-Si anode is proposed. The significance of this work is applicable not only to silicon, where SEI plays a dominant role in determining the cycle life performance and reversibility, but also for a number of other relevant battery chemistries such as Na-ion and multivalent redox systems.
[Display omitted]
•TERS measures the topography and chemical heterogeneity of SEI on a-Si at nanoscale•SEI composition of SEI constantly evolves with progressive galvanostatic cycling•TERS can provide molecular level conformational changes•A nanomosaic-multilayer model for SEI on a-Si is proposed
Solid electrolyte interphase (SEI) is considered the key component responsible for the safety, performance, and life for most secondary batteries. Despite this, a unified picture encompassing its chemical composition, distribution of phases, and topography at nanoscale is still lacking. We report the first observation of nanoscale chemical and topographical heterogeneity of a SEI formed on amorphous silicon (a-Si) using tip-enhanced Raman spectroscopy (TERS). Unlike ensemble averaged and relatively bulk sensitive vibrational spectroscopic techniques such as Raman and Fourier-transform infrared (FTIR), TERS is sensitive to dynamical evolution of the SEI at a lateral resolution of <10 nm and a sampling depth of <5 nm. The TERS results and analysis here can be broadly applicable for several other redox chemistries for Na-ion, solid-state, and metal air batteries. This study demonstrates that multi-modal spectroscopy like TERS can provide a useful mechanistic link between nanoscale morphology, interfacial transport, and the overall electrochemical performance.
This article probes one of the key fundamental factors that determines the safety and life of Lithium-ion batteries known as “solid electrolyte interphase” (SEI). In this work, we provided a mechanistic picture on how the SEI evolves with battery cycling by investigating the SEI chemical composition and topography by using state-of-the-art tip-enhanced Raman spectroscopy (TERS).</description><identifier>ISSN: 2542-4351</identifier><identifier>EISSN: 2542-4351</identifier><identifier>DOI: 10.1016/j.joule.2019.05.026</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>amorphous silicon anode ; batteries ; ENGINEERING ; FDTD simulation ; nanomosaic-multilayer model ; nanoscale heterogeneity ; non-gap mode TERS ; SEI ; solid electrolyte interphase ; TERS mapping ; tip-enhanced Raman spectroscopy</subject><ispartof>Joule, 2019-08, Vol.3 (8), p.2001-2019</ispartof><rights>2019 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-1ee0e8ad9ab3967c087ff06402635611b7b3c27a3bf665de4bf64ec2f75762443</citedby><cites>FETCH-LOGICAL-c441t-1ee0e8ad9ab3967c087ff06402635611b7b3c27a3bf665de4bf64ec2f75762443</cites><orcidid>0000-0002-6875-0057 ; 0000000251864461 ; 000000021391902X ; 0000000268750057 ; 0000000305836272 ; 0000000281879445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Hou, Tingzheng</creatorcontrib><creatorcontrib>Voylov, Dmitry N.</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Ruther, Rose E.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Persson, Kristin</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Sokolov, Alexei P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy</title><title>Joule</title><description>We employ tip-enhanced Raman spectroscopy (TERS) to study model amorphous silicon (a-Si) thin film anodes galvanostatically cycled for different numbers. For the 1× cycled a-Si, TERS shows good correlation between solid electrolyte interphase (SEI) topography and chemical mapping, corresponding to distribution of lithium ethylene dicarbonate (LEDC) and poly (ethylene oxide) (PEO)-like oligomer species. Subsequent electrochemical cycling makes the SEI relatively thick and rough with the chemical composition heavily dominated by LEDC monomer-dimer for 5× cycled a-Si. For 20× cycled a-Si, the TERS signal is dominated by carboxylate (RCO2Li) compounds of various conformations and fluorinated species (LixPOyFz). A nanomosaic-multilayer hybrid SEI model on top of the a-Si anode is proposed. The significance of this work is applicable not only to silicon, where SEI plays a dominant role in determining the cycle life performance and reversibility, but also for a number of other relevant battery chemistries such as Na-ion and multivalent redox systems.
[Display omitted]
•TERS measures the topography and chemical heterogeneity of SEI on a-Si at nanoscale•SEI composition of SEI constantly evolves with progressive galvanostatic cycling•TERS can provide molecular level conformational changes•A nanomosaic-multilayer model for SEI on a-Si is proposed
Solid electrolyte interphase (SEI) is considered the key component responsible for the safety, performance, and life for most secondary batteries. Despite this, a unified picture encompassing its chemical composition, distribution of phases, and topography at nanoscale is still lacking. We report the first observation of nanoscale chemical and topographical heterogeneity of a SEI formed on amorphous silicon (a-Si) using tip-enhanced Raman spectroscopy (TERS). Unlike ensemble averaged and relatively bulk sensitive vibrational spectroscopic techniques such as Raman and Fourier-transform infrared (FTIR), TERS is sensitive to dynamical evolution of the SEI at a lateral resolution of <10 nm and a sampling depth of <5 nm. The TERS results and analysis here can be broadly applicable for several other redox chemistries for Na-ion, solid-state, and metal air batteries. This study demonstrates that multi-modal spectroscopy like TERS can provide a useful mechanistic link between nanoscale morphology, interfacial transport, and the overall electrochemical performance.
This article probes one of the key fundamental factors that determines the safety and life of Lithium-ion batteries known as “solid electrolyte interphase” (SEI). In this work, we provided a mechanistic picture on how the SEI evolves with battery cycling by investigating the SEI chemical composition and topography by using state-of-the-art tip-enhanced Raman spectroscopy (TERS).</description><subject>amorphous silicon anode</subject><subject>batteries</subject><subject>ENGINEERING</subject><subject>FDTD simulation</subject><subject>nanomosaic-multilayer model</subject><subject>nanoscale heterogeneity</subject><subject>non-gap mode TERS</subject><subject>SEI</subject><subject>solid electrolyte interphase</subject><subject>TERS mapping</subject><subject>tip-enhanced Raman spectroscopy</subject><issn>2542-4351</issn><issn>2542-4351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EElXpL2Cx2BNsx3bSgQFVhVaqQKLtbDnOpXGV2lEcKuXfk7QMTEx3w3fv3nsIPVISU0Ll8zE--u8aYkboPCYiJkzeoAkTnEU8EfT2z36PZiEcCRlIljGZTFC9d60-Q23dAXcV4A_tfDC6BryCDlp_AAe267Ev8dbXtsDLGkzX-rrvAK_dgDSVDoD3YVTY2SZauko7AwX-0ift8La58MH4pn9Ad6WuA8x-5xTt35a7xSrafL6vF6-byHBOu4gCEMh0Mdd5MpepIVlalkTyIVgiJKV5mieGpTrJSylFAXyYHAwrU5FKxnkyRU9XXR86q4KxHZjKeOcGK4oKkQqWDVByhczgLrRQqqa1J932ihI1FquO6lKsGotVRKjx_xS9XK9g8H-20I7yMOa17aheePvv_Q9XU4Oo</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Nanda, Jagjit</creator><creator>Yang, Guang</creator><creator>Hou, Tingzheng</creator><creator>Voylov, Dmitry N.</creator><creator>Li, Xin</creator><creator>Ruther, Rose E.</creator><creator>Naguib, Michael</creator><creator>Persson, Kristin</creator><creator>Veith, Gabriel M.</creator><creator>Sokolov, Alexei P.</creator><general>Elsevier Inc</general><general>Elsevier - Cell Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/000000021391902X</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid><orcidid>https://orcid.org/0000000281879445</orcidid></search><sort><creationdate>20190821</creationdate><title>Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy</title><author>Nanda, Jagjit ; Yang, Guang ; Hou, Tingzheng ; Voylov, Dmitry N. ; Li, Xin ; Ruther, Rose E. ; Naguib, Michael ; Persson, Kristin ; Veith, Gabriel M. ; Sokolov, Alexei P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-1ee0e8ad9ab3967c087ff06402635611b7b3c27a3bf665de4bf64ec2f75762443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>amorphous silicon anode</topic><topic>batteries</topic><topic>ENGINEERING</topic><topic>FDTD simulation</topic><topic>nanomosaic-multilayer model</topic><topic>nanoscale heterogeneity</topic><topic>non-gap mode TERS</topic><topic>SEI</topic><topic>solid electrolyte interphase</topic><topic>TERS mapping</topic><topic>tip-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Hou, Tingzheng</creatorcontrib><creatorcontrib>Voylov, Dmitry N.</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Ruther, Rose E.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Persson, Kristin</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Sokolov, Alexei P.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Joule</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nanda, Jagjit</au><au>Yang, Guang</au><au>Hou, Tingzheng</au><au>Voylov, Dmitry N.</au><au>Li, Xin</au><au>Ruther, Rose E.</au><au>Naguib, Michael</au><au>Persson, Kristin</au><au>Veith, Gabriel M.</au><au>Sokolov, Alexei P.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy</atitle><jtitle>Joule</jtitle><date>2019-08-21</date><risdate>2019</risdate><volume>3</volume><issue>8</issue><spage>2001</spage><epage>2019</epage><pages>2001-2019</pages><issn>2542-4351</issn><eissn>2542-4351</eissn><abstract>We employ tip-enhanced Raman spectroscopy (TERS) to study model amorphous silicon (a-Si) thin film anodes galvanostatically cycled for different numbers. For the 1× cycled a-Si, TERS shows good correlation between solid electrolyte interphase (SEI) topography and chemical mapping, corresponding to distribution of lithium ethylene dicarbonate (LEDC) and poly (ethylene oxide) (PEO)-like oligomer species. Subsequent electrochemical cycling makes the SEI relatively thick and rough with the chemical composition heavily dominated by LEDC monomer-dimer for 5× cycled a-Si. For 20× cycled a-Si, the TERS signal is dominated by carboxylate (RCO2Li) compounds of various conformations and fluorinated species (LixPOyFz). A nanomosaic-multilayer hybrid SEI model on top of the a-Si anode is proposed. The significance of this work is applicable not only to silicon, where SEI plays a dominant role in determining the cycle life performance and reversibility, but also for a number of other relevant battery chemistries such as Na-ion and multivalent redox systems.
[Display omitted]
•TERS measures the topography and chemical heterogeneity of SEI on a-Si at nanoscale•SEI composition of SEI constantly evolves with progressive galvanostatic cycling•TERS can provide molecular level conformational changes•A nanomosaic-multilayer model for SEI on a-Si is proposed
Solid electrolyte interphase (SEI) is considered the key component responsible for the safety, performance, and life for most secondary batteries. Despite this, a unified picture encompassing its chemical composition, distribution of phases, and topography at nanoscale is still lacking. We report the first observation of nanoscale chemical and topographical heterogeneity of a SEI formed on amorphous silicon (a-Si) using tip-enhanced Raman spectroscopy (TERS). Unlike ensemble averaged and relatively bulk sensitive vibrational spectroscopic techniques such as Raman and Fourier-transform infrared (FTIR), TERS is sensitive to dynamical evolution of the SEI at a lateral resolution of <10 nm and a sampling depth of <5 nm. The TERS results and analysis here can be broadly applicable for several other redox chemistries for Na-ion, solid-state, and metal air batteries. This study demonstrates that multi-modal spectroscopy like TERS can provide a useful mechanistic link between nanoscale morphology, interfacial transport, and the overall electrochemical performance.
This article probes one of the key fundamental factors that determines the safety and life of Lithium-ion batteries known as “solid electrolyte interphase” (SEI). In this work, we provided a mechanistic picture on how the SEI evolves with battery cycling by investigating the SEI chemical composition and topography by using state-of-the-art tip-enhanced Raman spectroscopy (TERS).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.joule.2019.05.026</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000000251864461</orcidid><orcidid>https://orcid.org/000000021391902X</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000305836272</orcidid><orcidid>https://orcid.org/0000000281879445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2542-4351 |
ispartof | Joule, 2019-08, Vol.3 (8), p.2001-2019 |
issn | 2542-4351 2542-4351 |
language | eng |
recordid | cdi_osti_scitechconnect_1557528 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | amorphous silicon anode batteries ENGINEERING FDTD simulation nanomosaic-multilayer model nanoscale heterogeneity non-gap mode TERS SEI solid electrolyte interphase TERS mapping tip-enhanced Raman spectroscopy |
title | Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Nanoscale%20Heterogeneity%20of%20Solid%20Electrolyte%20Interphase%20Using%20Tip-Enhanced%20Raman%20Spectroscopy&rft.jtitle=Joule&rft.au=Nanda,%20Jagjit&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-08-21&rft.volume=3&rft.issue=8&rft.spage=2001&rft.epage=2019&rft.pages=2001-2019&rft.issn=2542-4351&rft.eissn=2542-4351&rft_id=info:doi/10.1016/j.joule.2019.05.026&rft_dat=%3Celsevier_osti_%3ES2542435119302697%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2542435119302697&rfr_iscdi=true |