Si boride-coated Si nanoparticles with improved thermal oxidation resistance

A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano energy 2014-10, Vol.9 (C), p.32-40
Hauptverfasser: Kim, Tae Kyoung, Moon, Jaeyun, VanSaders, Bryan, Chun, Dongwon, Gardner, Calvin J., Jung, Jae-Young, Wang, Gang, Chen, Renkun, Liu, Zhaowei, Qiao, Yu, Jin, Sungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue C
container_start_page 32
container_title Nano energy
container_volume 9
creator Kim, Tae Kyoung
Moon, Jaeyun
VanSaders, Bryan
Chun, Dongwon
Gardner, Calvin J.
Jung, Jae-Young
Wang, Gang
Chen, Renkun
Liu, Zhaowei
Qiao, Yu
Jin, Sungho
description A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation. [Display omitted] •Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.
doi_str_mv 10.1016/j.nanoen.2014.06.021
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1556803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221128551400127X</els_id><sourcerecordid>S221128551400127X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</originalsourceid><addsrcrecordid>eNp9kD1rwzAQhjW00JDmH3QwhY52JcWy5KVQQr8g0KHZxVk6EwXHCpJI239fGZeOveXg7n3v4yHkhtGKUdbcH6oRRo9jxSmrK9pUlLMLsuCcsZIrIa7IKsYDzdEIJhlfkO2HKzofnMXSeEhoi1yYhpwgJGcGjMWnS_vCHU_Bn3M77TEcYSj8l7OQnB-LgNHFBKPBa3LZwxBx9ZuXZPf8tNu8ltv3l7fN47Y0NW1TiablynasAaMso7LtwFIm0HAJtrE1SGtb6GQvlGmtpBQ6rqTslegkb9V6SW7nsT4mp6NxCc3e-HFEkzQTolF0nUX1LDLBxxiw16fgjhC-NaN6gqUPeoalJ1iaNjrDyra72XaCaGDoQ_7LxT8vb-laimbSPcw6zH-eHYbpDswMrAvTGda7_xf9AMCUhH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><source>Alma/SFX Local Collection</source><creator>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</creator><creatorcontrib>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</creatorcontrib><description>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation. [Display omitted] •Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2014.06.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Core–shell nanoparticles ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fullerenes and related materials ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Physics ; Silicon boride nanoshell ; Sodium borohydride ; Solar thermal power generation ; Spectrally selective coating ; Thermal oxidation resistance ; Visible and ultraviolet spectra</subject><ispartof>Nano energy, 2014-10, Vol.9 (C), p.32-40</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</citedby><cites>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29037561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1556803$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Kyoung</creatorcontrib><creatorcontrib>Moon, Jaeyun</creatorcontrib><creatorcontrib>VanSaders, Bryan</creatorcontrib><creatorcontrib>Chun, Dongwon</creatorcontrib><creatorcontrib>Gardner, Calvin J.</creatorcontrib><creatorcontrib>Jung, Jae-Young</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Renkun</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Jin, Sungho</creatorcontrib><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><title>Nano energy</title><description>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation. [Display omitted] •Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Core–shell nanoparticles</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Physics</subject><subject>Silicon boride nanoshell</subject><subject>Sodium borohydride</subject><subject>Solar thermal power generation</subject><subject>Spectrally selective coating</subject><subject>Thermal oxidation resistance</subject><subject>Visible and ultraviolet spectra</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rwzAQhjW00JDmH3QwhY52JcWy5KVQQr8g0KHZxVk6EwXHCpJI239fGZeOveXg7n3v4yHkhtGKUdbcH6oRRo9jxSmrK9pUlLMLsuCcsZIrIa7IKsYDzdEIJhlfkO2HKzofnMXSeEhoi1yYhpwgJGcGjMWnS_vCHU_Bn3M77TEcYSj8l7OQnB-LgNHFBKPBa3LZwxBx9ZuXZPf8tNu8ltv3l7fN47Y0NW1TiablynasAaMso7LtwFIm0HAJtrE1SGtb6GQvlGmtpBQ6rqTslegkb9V6SW7nsT4mp6NxCc3e-HFEkzQTolF0nUX1LDLBxxiw16fgjhC-NaN6gqUPeoalJ1iaNjrDyra72XaCaGDoQ_7LxT8vb-laimbSPcw6zH-eHYbpDswMrAvTGda7_xf9AMCUhH4</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Kim, Tae Kyoung</creator><creator>Moon, Jaeyun</creator><creator>VanSaders, Bryan</creator><creator>Chun, Dongwon</creator><creator>Gardner, Calvin J.</creator><creator>Jung, Jae-Young</creator><creator>Wang, Gang</creator><creator>Chen, Renkun</creator><creator>Liu, Zhaowei</creator><creator>Qiao, Yu</creator><creator>Jin, Sungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><author>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Core–shell nanoparticles</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Physics</topic><topic>Silicon boride nanoshell</topic><topic>Sodium borohydride</topic><topic>Solar thermal power generation</topic><topic>Spectrally selective coating</topic><topic>Thermal oxidation resistance</topic><topic>Visible and ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Kyoung</creatorcontrib><creatorcontrib>Moon, Jaeyun</creatorcontrib><creatorcontrib>VanSaders, Bryan</creatorcontrib><creatorcontrib>Chun, Dongwon</creatorcontrib><creatorcontrib>Gardner, Calvin J.</creatorcontrib><creatorcontrib>Jung, Jae-Young</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Renkun</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Jin, Sungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Kyoung</au><au>Moon, Jaeyun</au><au>VanSaders, Bryan</au><au>Chun, Dongwon</au><au>Gardner, Calvin J.</au><au>Jung, Jae-Young</au><au>Wang, Gang</au><au>Chen, Renkun</au><au>Liu, Zhaowei</au><au>Qiao, Yu</au><au>Jin, Sungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</atitle><jtitle>Nano energy</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>9</volume><issue>C</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>2211-2855</issn><abstract>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation. [Display omitted] •Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2014.06.021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-2855
ispartof Nano energy, 2014-10, Vol.9 (C), p.32-40
issn 2211-2855
language eng
recordid cdi_osti_scitechconnect_1556803
source Alma/SFX Local Collection
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Core–shell nanoparticles
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fullerenes and related materials
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Physics
Silicon boride nanoshell
Sodium borohydride
Solar thermal power generation
Spectrally selective coating
Thermal oxidation resistance
Visible and ultraviolet spectra
title Si boride-coated Si nanoparticles with improved thermal oxidation resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20boride-coated%20Si%20nanoparticles%20with%20improved%20thermal%20oxidation%20resistance&rft.jtitle=Nano%20energy&rft.au=Kim,%20Tae%20Kyoung&rft.date=2014-10-01&rft.volume=9&rft.issue=C&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2014.06.021&rft_dat=%3Celsevier_osti_%3ES221128551400127X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S221128551400127X&rfr_iscdi=true