Si boride-coated Si nanoparticles with improved thermal oxidation resistance
A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline p...
Gespeichert in:
Veröffentlicht in: | Nano energy 2014-10, Vol.9 (C), p.32-40 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | C |
container_start_page | 32 |
container_title | Nano energy |
container_volume | 9 |
creator | Kim, Tae Kyoung Moon, Jaeyun VanSaders, Bryan Chun, Dongwon Gardner, Calvin J. Jung, Jae-Young Wang, Gang Chen, Renkun Liu, Zhaowei Qiao, Yu Jin, Sungho |
description | A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation.
[Display omitted]
•Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air. |
doi_str_mv | 10.1016/j.nanoen.2014.06.021 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1556803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221128551400127X</els_id><sourcerecordid>S221128551400127X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</originalsourceid><addsrcrecordid>eNp9kD1rwzAQhjW00JDmH3QwhY52JcWy5KVQQr8g0KHZxVk6EwXHCpJI239fGZeOveXg7n3v4yHkhtGKUdbcH6oRRo9jxSmrK9pUlLMLsuCcsZIrIa7IKsYDzdEIJhlfkO2HKzofnMXSeEhoi1yYhpwgJGcGjMWnS_vCHU_Bn3M77TEcYSj8l7OQnB-LgNHFBKPBa3LZwxBx9ZuXZPf8tNu8ltv3l7fN47Y0NW1TiablynasAaMso7LtwFIm0HAJtrE1SGtb6GQvlGmtpBQ6rqTslegkb9V6SW7nsT4mp6NxCc3e-HFEkzQTolF0nUX1LDLBxxiw16fgjhC-NaN6gqUPeoalJ1iaNjrDyra72XaCaGDoQ_7LxT8vb-laimbSPcw6zH-eHYbpDswMrAvTGda7_xf9AMCUhH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><source>Alma/SFX Local Collection</source><creator>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</creator><creatorcontrib>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</creatorcontrib><description>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation.
[Display omitted]
•Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</description><identifier>ISSN: 2211-2855</identifier><identifier>DOI: 10.1016/j.nanoen.2014.06.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Core–shell nanoparticles ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fullerenes and related materials ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Physics ; Silicon boride nanoshell ; Sodium borohydride ; Solar thermal power generation ; Spectrally selective coating ; Thermal oxidation resistance ; Visible and ultraviolet spectra</subject><ispartof>Nano energy, 2014-10, Vol.9 (C), p.32-40</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</citedby><cites>FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29037561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1556803$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Kyoung</creatorcontrib><creatorcontrib>Moon, Jaeyun</creatorcontrib><creatorcontrib>VanSaders, Bryan</creatorcontrib><creatorcontrib>Chun, Dongwon</creatorcontrib><creatorcontrib>Gardner, Calvin J.</creatorcontrib><creatorcontrib>Jung, Jae-Young</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Renkun</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Jin, Sungho</creatorcontrib><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><title>Nano energy</title><description>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation.
[Display omitted]
•Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Core–shell nanoparticles</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Physics</subject><subject>Silicon boride nanoshell</subject><subject>Sodium borohydride</subject><subject>Solar thermal power generation</subject><subject>Spectrally selective coating</subject><subject>Thermal oxidation resistance</subject><subject>Visible and ultraviolet spectra</subject><issn>2211-2855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rwzAQhjW00JDmH3QwhY52JcWy5KVQQr8g0KHZxVk6EwXHCpJI239fGZeOveXg7n3v4yHkhtGKUdbcH6oRRo9jxSmrK9pUlLMLsuCcsZIrIa7IKsYDzdEIJhlfkO2HKzofnMXSeEhoi1yYhpwgJGcGjMWnS_vCHU_Bn3M77TEcYSj8l7OQnB-LgNHFBKPBa3LZwxBx9ZuXZPf8tNu8ltv3l7fN47Y0NW1TiablynasAaMso7LtwFIm0HAJtrE1SGtb6GQvlGmtpBQ6rqTslegkb9V6SW7nsT4mp6NxCc3e-HFEkzQTolF0nUX1LDLBxxiw16fgjhC-NaN6gqUPeoalJ1iaNjrDyra72XaCaGDoQ_7LxT8vb-laimbSPcw6zH-eHYbpDswMrAvTGda7_xf9AMCUhH4</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Kim, Tae Kyoung</creator><creator>Moon, Jaeyun</creator><creator>VanSaders, Bryan</creator><creator>Chun, Dongwon</creator><creator>Gardner, Calvin J.</creator><creator>Jung, Jae-Young</creator><creator>Wang, Gang</creator><creator>Chen, Renkun</creator><creator>Liu, Zhaowei</creator><creator>Qiao, Yu</creator><creator>Jin, Sungho</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</title><author>Kim, Tae Kyoung ; Moon, Jaeyun ; VanSaders, Bryan ; Chun, Dongwon ; Gardner, Calvin J. ; Jung, Jae-Young ; Wang, Gang ; Chen, Renkun ; Liu, Zhaowei ; Qiao, Yu ; Jin, Sungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ec928db16ac8d1079bad015ec27ad6d4a7dd9ab7f58c9d700ab2877f85b72983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Core–shell nanoparticles</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Physics</topic><topic>Silicon boride nanoshell</topic><topic>Sodium borohydride</topic><topic>Solar thermal power generation</topic><topic>Spectrally selective coating</topic><topic>Thermal oxidation resistance</topic><topic>Visible and ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Kyoung</creatorcontrib><creatorcontrib>Moon, Jaeyun</creatorcontrib><creatorcontrib>VanSaders, Bryan</creatorcontrib><creatorcontrib>Chun, Dongwon</creatorcontrib><creatorcontrib>Gardner, Calvin J.</creatorcontrib><creatorcontrib>Jung, Jae-Young</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Chen, Renkun</creatorcontrib><creatorcontrib>Liu, Zhaowei</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Jin, Sungho</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nano energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Kyoung</au><au>Moon, Jaeyun</au><au>VanSaders, Bryan</au><au>Chun, Dongwon</au><au>Gardner, Calvin J.</au><au>Jung, Jae-Young</au><au>Wang, Gang</au><au>Chen, Renkun</au><au>Liu, Zhaowei</au><au>Qiao, Yu</au><au>Jin, Sungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si boride-coated Si nanoparticles with improved thermal oxidation resistance</atitle><jtitle>Nano energy</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>9</volume><issue>C</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>2211-2855</issn><abstract>A new fabrication technique is devised to synthesize conformal Si core–shell nanoparticles (NPs) with Si boride nanoshell by reacting the surface atoms of Si NPs (50–200nm diameter) with a molten salt of sodium borohydride. The shell layer, about 10–20nm thick, consists of a mixture of crystalline phase (SiBx) and other amorphous phases as identified by TEM and EELS analysis. New absorbance peaks for Si–Si boride core–shell NPs appear at the wavenumber of 940 and 777–677cm−1 in FT-IR analysis. TGA analysis reveals that the core–shell structured Si–Si boride NPs exhibit a remarkably improved resistance to thermal oxidation by a factor of 4.6 at 750°C and at by a factor of 3.5 at 850°C compared to bare Si. Optical measurements show that spectrally selective coating (SSC) layers made of Si–Si boride NPs have a superior optical stability to that of the bare Si NPs after annealing at high temperature, and desirably exhibit a lower reflectance in the visible spectrum range than the bare Si NPs. These surface-protected, oxidation-resistant semiconductor materials and their novel fabrication methods exhibit further broad applicability of boride nanolayers which can be used for high temperature applications such as solar thermal power generation.
[Display omitted]
•Si boride nanoshell (~15nm) is formed with a molten salt of sodium borohydride.•Si boride-coated Si NPs have remarkably improved thermal oxidation resistance.•The core–shell NPs retain optical stability after annealing at 850°C in air.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nanoen.2014.06.021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-2855 |
ispartof | Nano energy, 2014-10, Vol.9 (C), p.32-40 |
issn | 2211-2855 |
language | eng |
recordid | cdi_osti_scitechconnect_1556803 |
source | Alma/SFX Local Collection |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Core–shell nanoparticles Cross-disciplinary physics: materials science rheology Exact sciences and technology Fullerenes and related materials Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Physics Silicon boride nanoshell Sodium borohydride Solar thermal power generation Spectrally selective coating Thermal oxidation resistance Visible and ultraviolet spectra |
title | Si boride-coated Si nanoparticles with improved thermal oxidation resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20boride-coated%20Si%20nanoparticles%20with%20improved%20thermal%20oxidation%20resistance&rft.jtitle=Nano%20energy&rft.au=Kim,%20Tae%20Kyoung&rft.date=2014-10-01&rft.volume=9&rft.issue=C&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=2211-2855&rft_id=info:doi/10.1016/j.nanoen.2014.06.021&rft_dat=%3Celsevier_osti_%3ES221128551400127X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S221128551400127X&rfr_iscdi=true |