Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes
Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electro...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-10, Vol.31 (40), p.e1903239-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e1903239 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Zheng, Ding Peng, Ruixiang Wang, Gang Logsdon, Jenna Leigh Wang, Binghao Hu, Xiaobing Chen, Yao Dravid, Vinayak P. Wasielewski, Michael R. Yu, Junsheng Huang, Wei Ge, Ziyi Marks, Tobin J. Facchetti, Antonio |
description | Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.
Nonconjugated multi‐zwitterionic small‐molecule electrolyte (NSE) molecules in perovskite solar cells (PSCs) act not only as both charge‐extracting layers for barrier‐free cathode charge collection but also as charged defect fillers in perovskite bulk and interfaces by spontaneous bottom‐up passivation. Thus, the NSE‐based PSCs deliver PCEs as high as 21.18% with an ultrahigh VOC of 1.19 V, suppressed hysteresis, and enhanced stability. |
doi_str_mv | 10.1002/adma.201903239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1556796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299383355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5459-f1a372d1cc9727b3340327c06479315769630658b8ecff51f1f48db9176d6b563</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEokNhyxJZsGGTwT-xEy-n04FWaqHS0HXkOPbUU8ee2k7R7HgEHoIn40nwKKVIbFhdyffzuefeUxSvEZwjCPEH0Q9ijiHikGDCnxQzRDEqK8jp02IGOaElZ1VzVLyIcQsh5Ayy58URQRXEFDez4ufaDKNNwik_RnDiU_LDr-8_rnfg3CUVtJBGWCBcD05GewtOlVYygSsRo7kXyXgHjANnZnNj92CltZFGudy3wokArlTw9_HWJAXW3uaHpbI2gjEatwGfvZPebceNSKoH60FYmwdfeqvkaBVY5ZqCt_uk4svimRY2qlcP9bi4_rj6ujwrL758Ol8uLkpJK8pLjQSpcY-k5DWuO0KqfJRaQlbVnCBaM84IZLTpGiW1pkgjXTV9x1HNetZRRo6Lt5Ouj8m0UWbj8iabdNlKiyhlNT9A7ydoF_zdqGJqBxNlXmy6YYtxjTHivCYZffcPuvVjcHmFTHFOGkIozdR8omTwMQal210wgwj7FsH2EHJ7CLl9DDl_ePMgO3aD6h_xP6lmgE_AN2PV_j9y7eL0cvFX_Dd_NrY2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299383355</pqid></control><display><type>article</type><title>Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes</title><source>Access via Wiley Online Library</source><creator>Zheng, Ding ; Peng, Ruixiang ; Wang, Gang ; Logsdon, Jenna Leigh ; Wang, Binghao ; Hu, Xiaobing ; Chen, Yao ; Dravid, Vinayak P. ; Wasielewski, Michael R. ; Yu, Junsheng ; Huang, Wei ; Ge, Ziyi ; Marks, Tobin J. ; Facchetti, Antonio</creator><creatorcontrib>Zheng, Ding ; Peng, Ruixiang ; Wang, Gang ; Logsdon, Jenna Leigh ; Wang, Binghao ; Hu, Xiaobing ; Chen, Yao ; Dravid, Vinayak P. ; Wasielewski, Michael R. ; Yu, Junsheng ; Huang, Wei ; Ge, Ziyi ; Marks, Tobin J. ; Facchetti, Antonio</creatorcontrib><description>Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.
Nonconjugated multi‐zwitterionic small‐molecule electrolyte (NSE) molecules in perovskite solar cells (PSCs) act not only as both charge‐extracting layers for barrier‐free cathode charge collection but also as charged defect fillers in perovskite bulk and interfaces by spontaneous bottom‐up passivation. Thus, the NSE‐based PSCs deliver PCEs as high as 21.18% with an ultrahigh VOC of 1.19 V, suppressed hysteresis, and enhanced stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903239</identifier><identifier>PMID: 31402528</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bottom‐up passivation ; Charge transfer ; Defects ; Electrolytes ; Electrolytic cells ; electron‐transport layer ; Energy conservation ; Energy conversion efficiency ; Interface stability ; Materials science ; Passivity ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; zwitterions</subject><ispartof>Advanced materials (Weinheim), 2019-10, Vol.31 (40), p.e1903239-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5459-f1a372d1cc9727b3340327c06479315769630658b8ecff51f1f48db9176d6b563</citedby><cites>FETCH-LOGICAL-c5459-f1a372d1cc9727b3340327c06479315769630658b8ecff51f1f48db9176d6b563</cites><orcidid>0000-0002-6420-733X ; 0000-0002-0973-8015 ; 0000-0003-3656-6017 ; 0000-0002-8175-7958 ; 0000-0001-8771-0141 ; 0000-0003-2920-5440 ; 0000-0002-7484-8114 ; 0000-0002-6007-3063 ; 000000026420733X ; 0000000336566017 ; 0000000281757958 ; 0000000274848114 ; 0000000209738015 ; 0000000329205440 ; 0000000187710141 ; 0000000260073063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201903239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201903239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31402528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1556796$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Ding</creatorcontrib><creatorcontrib>Peng, Ruixiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Logsdon, Jenna Leigh</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Hu, Xiaobing</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Yu, Junsheng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ge, Ziyi</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><title>Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.
Nonconjugated multi‐zwitterionic small‐molecule electrolyte (NSE) molecules in perovskite solar cells (PSCs) act not only as both charge‐extracting layers for barrier‐free cathode charge collection but also as charged defect fillers in perovskite bulk and interfaces by spontaneous bottom‐up passivation. Thus, the NSE‐based PSCs deliver PCEs as high as 21.18% with an ultrahigh VOC of 1.19 V, suppressed hysteresis, and enhanced stability.</description><subject>bottom‐up passivation</subject><subject>Charge transfer</subject><subject>Defects</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>electron‐transport layer</subject><subject>Energy conservation</subject><subject>Energy conversion efficiency</subject><subject>Interface stability</subject><subject>Materials science</subject><subject>Passivity</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>zwitterions</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSMEokNhyxJZsGGTwT-xEy-n04FWaqHS0HXkOPbUU8ee2k7R7HgEHoIn40nwKKVIbFhdyffzuefeUxSvEZwjCPEH0Q9ijiHikGDCnxQzRDEqK8jp02IGOaElZ1VzVLyIcQsh5Ayy58URQRXEFDez4ufaDKNNwik_RnDiU_LDr-8_rnfg3CUVtJBGWCBcD05GewtOlVYygSsRo7kXyXgHjANnZnNj92CltZFGudy3wokArlTw9_HWJAXW3uaHpbI2gjEatwGfvZPebceNSKoH60FYmwdfeqvkaBVY5ZqCt_uk4svimRY2qlcP9bi4_rj6ujwrL758Ol8uLkpJK8pLjQSpcY-k5DWuO0KqfJRaQlbVnCBaM84IZLTpGiW1pkgjXTV9x1HNetZRRo6Lt5Ouj8m0UWbj8iabdNlKiyhlNT9A7ydoF_zdqGJqBxNlXmy6YYtxjTHivCYZffcPuvVjcHmFTHFOGkIozdR8omTwMQal210wgwj7FsH2EHJ7CLl9DDl_ePMgO3aD6h_xP6lmgE_AN2PV_j9y7eL0cvFX_Dd_NrY2</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zheng, Ding</creator><creator>Peng, Ruixiang</creator><creator>Wang, Gang</creator><creator>Logsdon, Jenna Leigh</creator><creator>Wang, Binghao</creator><creator>Hu, Xiaobing</creator><creator>Chen, Yao</creator><creator>Dravid, Vinayak P.</creator><creator>Wasielewski, Michael R.</creator><creator>Yu, Junsheng</creator><creator>Huang, Wei</creator><creator>Ge, Ziyi</creator><creator>Marks, Tobin J.</creator><creator>Facchetti, Antonio</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6420-733X</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-3656-6017</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0002-7484-8114</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/000000026420733X</orcidid><orcidid>https://orcid.org/0000000336566017</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000274848114</orcidid><orcidid>https://orcid.org/0000000209738015</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid></search><sort><creationdate>20191001</creationdate><title>Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes</title><author>Zheng, Ding ; Peng, Ruixiang ; Wang, Gang ; Logsdon, Jenna Leigh ; Wang, Binghao ; Hu, Xiaobing ; Chen, Yao ; Dravid, Vinayak P. ; Wasielewski, Michael R. ; Yu, Junsheng ; Huang, Wei ; Ge, Ziyi ; Marks, Tobin J. ; Facchetti, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5459-f1a372d1cc9727b3340327c06479315769630658b8ecff51f1f48db9176d6b563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bottom‐up passivation</topic><topic>Charge transfer</topic><topic>Defects</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>electron‐transport layer</topic><topic>Energy conservation</topic><topic>Energy conversion efficiency</topic><topic>Interface stability</topic><topic>Materials science</topic><topic>Passivity</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ding</creatorcontrib><creatorcontrib>Peng, Ruixiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Logsdon, Jenna Leigh</creatorcontrib><creatorcontrib>Wang, Binghao</creatorcontrib><creatorcontrib>Hu, Xiaobing</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Wasielewski, Michael R.</creatorcontrib><creatorcontrib>Yu, Junsheng</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Ge, Ziyi</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Facchetti, Antonio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ding</au><au>Peng, Ruixiang</au><au>Wang, Gang</au><au>Logsdon, Jenna Leigh</au><au>Wang, Binghao</au><au>Hu, Xiaobing</au><au>Chen, Yao</au><au>Dravid, Vinayak P.</au><au>Wasielewski, Michael R.</au><au>Yu, Junsheng</au><au>Huang, Wei</au><au>Ge, Ziyi</au><au>Marks, Tobin J.</au><au>Facchetti, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>31</volume><issue>40</issue><spage>e1903239</spage><epage>n/a</epage><pages>e1903239-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.
Nonconjugated multi‐zwitterionic small‐molecule electrolyte (NSE) molecules in perovskite solar cells (PSCs) act not only as both charge‐extracting layers for barrier‐free cathode charge collection but also as charged defect fillers in perovskite bulk and interfaces by spontaneous bottom‐up passivation. Thus, the NSE‐based PSCs deliver PCEs as high as 21.18% with an ultrahigh VOC of 1.19 V, suppressed hysteresis, and enhanced stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31402528</pmid><doi>10.1002/adma.201903239</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6420-733X</orcidid><orcidid>https://orcid.org/0000-0002-0973-8015</orcidid><orcidid>https://orcid.org/0000-0003-3656-6017</orcidid><orcidid>https://orcid.org/0000-0002-8175-7958</orcidid><orcidid>https://orcid.org/0000-0001-8771-0141</orcidid><orcidid>https://orcid.org/0000-0003-2920-5440</orcidid><orcidid>https://orcid.org/0000-0002-7484-8114</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/000000026420733X</orcidid><orcidid>https://orcid.org/0000000336566017</orcidid><orcidid>https://orcid.org/0000000281757958</orcidid><orcidid>https://orcid.org/0000000274848114</orcidid><orcidid>https://orcid.org/0000000209738015</orcidid><orcidid>https://orcid.org/0000000329205440</orcidid><orcidid>https://orcid.org/0000000187710141</orcidid><orcidid>https://orcid.org/0000000260073063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-10, Vol.31 (40), p.e1903239-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1556796 |
source | Access via Wiley Online Library |
subjects | bottom‐up passivation Charge transfer Defects Electrolytes Electrolytic cells electron‐transport layer Energy conservation Energy conversion efficiency Interface stability Materials science Passivity perovskite solar cells Perovskites Photovoltaic cells Solar cells zwitterions |
title | Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T22%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Bottom%E2%80%90Up%20Interfacial%20and%20Bulk%20Defect%20Passivation%20in%20Highly%20Efficient%20Planar%20Perovskite%20Solar%20Cells%20using%20Nonconjugated%20Small%E2%80%90Molecule%20Electrolytes&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zheng,%20Ding&rft.date=2019-10-01&rft.volume=31&rft.issue=40&rft.spage=e1903239&rft.epage=n/a&rft.pages=e1903239-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903239&rft_dat=%3Cproquest_osti_%3E2299383355%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299383355&rft_id=info:pmid/31402528&rfr_iscdi=true |