Simultaneous Bottom‐Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small‐Molecule Electrolytes

Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-10, Vol.31 (40), p.e1903239-n/a
Hauptverfasser: Zheng, Ding, Peng, Ruixiang, Wang, Gang, Logsdon, Jenna Leigh, Wang, Binghao, Hu, Xiaobing, Chen, Yao, Dravid, Vinayak P., Wasielewski, Michael R., Yu, Junsheng, Huang, Wei, Ge, Ziyi, Marks, Tobin J., Facchetti, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances. Nonconjugated multi‐zwitterionic small‐molecule electrolyte (NSE) molecules in perovskite solar cells (PSCs) act not only as both charge‐extracting layers for barrier‐free cathode charge collection but also as charged defect fillers in perovskite bulk and interfaces by spontaneous bottom‐up passivation. Thus, the NSE‐based PSCs deliver PCEs as high as 21.18% with an ultrahigh VOC of 1.19 V, suppressed hysteresis, and enhanced stability.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201903239