Room-temperature creep resistance of Co-based metallic glasses

The room-temperature creep resistance of the Co56Ta9B35 metallic glass was determined by a nanoindentation technique. Results showed that the creep curves were described by a generalized Kelvin model. The low creep strain-rate sensitivity parameter and creep rate derived from the displacement–holdin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2014-11, Vol.90-91 (C), p.45-48
Hauptverfasser: Yu, P.F., Feng, S.D., Xu, G.S., Guo, X.L., Wang, Y.Y., Zhao, W., Qi, L., Li, G., Liaw, P.K., Liu, R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue C
container_start_page 45
container_title Scripta materialia
container_volume 90-91
creator Yu, P.F.
Feng, S.D.
Xu, G.S.
Guo, X.L.
Wang, Y.Y.
Zhao, W.
Qi, L.
Li, G.
Liaw, P.K.
Liu, R.P.
description The room-temperature creep resistance of the Co56Ta9B35 metallic glass was determined by a nanoindentation technique. Results showed that the creep curves were described by a generalized Kelvin model. The low creep strain-rate sensitivity parameter and creep rate derived from the displacement–holding time curves demonstrated the high creep resistance of the Co56Ta9B35 metallic glass. The deformation mechanism causing the nanoindentation creep was discussed based on the “shear transformation zone” concept, which gave an explanation for the creep behavior in metallic glasses.
doi_str_mv 10.1016/j.scriptamat.2014.07.013
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1556488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646214002954</els_id><sourcerecordid>1651410620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-2e579cf0a884aec896901cb4a65f6c785d8c297d099742f9531650f807a76ad03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhosoqKv_oXjy0jrp5vMi6OIXCILoOcR0qlnaTc1kBf-9LSt49DRzeN-HmacoSgY1AyYv1jX5FMbsBpfrBhivQdXAlnvFEdOqqTQXcn_al8JUksvmsDgmWgOAZA07Ki6fYxyqjMOIyeVtwtInxLFMSIGy23gsY1euYvXmCNtywOz6PvjyvXdESCfFQed6wtPfuSheb29eVvfV49Pdw-rqsfLc6Fw1KJTxHTituUOvjTTA_Bt3UnTSKy1a7RujWjBG8aYzYsmkgE6Dckq6FpaL4mzHjZSDJR8y-g8fNxv02TIhJNd6Cp3vQmOKn1ukbIdAHvvebTBuyU5MxhnIZubpXdSnSJSws2MKg0vfloGdvdq1_fNqZ68WlJ28TtXrXRWnf78CpvkcnES1Ic3XtDH8D_kBcGeFVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651410620</pqid></control><display><type>article</type><title>Room-temperature creep resistance of Co-based metallic glasses</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yu, P.F. ; Feng, S.D. ; Xu, G.S. ; Guo, X.L. ; Wang, Y.Y. ; Zhao, W. ; Qi, L. ; Li, G. ; Liaw, P.K. ; Liu, R.P.</creator><creatorcontrib>Yu, P.F. ; Feng, S.D. ; Xu, G.S. ; Guo, X.L. ; Wang, Y.Y. ; Zhao, W. ; Qi, L. ; Li, G. ; Liaw, P.K. ; Liu, R.P.</creatorcontrib><description>The room-temperature creep resistance of the Co56Ta9B35 metallic glass was determined by a nanoindentation technique. Results showed that the creep curves were described by a generalized Kelvin model. The low creep strain-rate sensitivity parameter and creep rate derived from the displacement–holding time curves demonstrated the high creep resistance of the Co56Ta9B35 metallic glass. The deformation mechanism causing the nanoindentation creep was discussed based on the “shear transformation zone” concept, which gave an explanation for the creep behavior in metallic glasses.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/j.scriptamat.2014.07.013</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amorphous materials ; Creep (materials) ; Creep resistance ; Creep strength ; Displacement ; Mathematical models ; Metallic glasses ; Nanoindentation ; Shear transformation zone ; Transformations</subject><ispartof>Scripta materialia, 2014-11, Vol.90-91 (C), p.45-48</ispartof><rights>2014 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-2e579cf0a884aec896901cb4a65f6c785d8c297d099742f9531650f807a76ad03</citedby><cites>FETCH-LOGICAL-c498t-2e579cf0a884aec896901cb4a65f6c785d8c297d099742f9531650f807a76ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scriptamat.2014.07.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1556488$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, P.F.</creatorcontrib><creatorcontrib>Feng, S.D.</creatorcontrib><creatorcontrib>Xu, G.S.</creatorcontrib><creatorcontrib>Guo, X.L.</creatorcontrib><creatorcontrib>Wang, Y.Y.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Qi, L.</creatorcontrib><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Liaw, P.K.</creatorcontrib><creatorcontrib>Liu, R.P.</creatorcontrib><title>Room-temperature creep resistance of Co-based metallic glasses</title><title>Scripta materialia</title><description>The room-temperature creep resistance of the Co56Ta9B35 metallic glass was determined by a nanoindentation technique. Results showed that the creep curves were described by a generalized Kelvin model. The low creep strain-rate sensitivity parameter and creep rate derived from the displacement–holding time curves demonstrated the high creep resistance of the Co56Ta9B35 metallic glass. The deformation mechanism causing the nanoindentation creep was discussed based on the “shear transformation zone” concept, which gave an explanation for the creep behavior in metallic glasses.</description><subject>Amorphous materials</subject><subject>Creep (materials)</subject><subject>Creep resistance</subject><subject>Creep strength</subject><subject>Displacement</subject><subject>Mathematical models</subject><subject>Metallic glasses</subject><subject>Nanoindentation</subject><subject>Shear transformation zone</subject><subject>Transformations</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhosoqKv_oXjy0jrp5vMi6OIXCILoOcR0qlnaTc1kBf-9LSt49DRzeN-HmacoSgY1AyYv1jX5FMbsBpfrBhivQdXAlnvFEdOqqTQXcn_al8JUksvmsDgmWgOAZA07Ki6fYxyqjMOIyeVtwtInxLFMSIGy23gsY1euYvXmCNtywOz6PvjyvXdESCfFQed6wtPfuSheb29eVvfV49Pdw-rqsfLc6Fw1KJTxHTituUOvjTTA_Bt3UnTSKy1a7RujWjBG8aYzYsmkgE6Dckq6FpaL4mzHjZSDJR8y-g8fNxv02TIhJNd6Cp3vQmOKn1ukbIdAHvvebTBuyU5MxhnIZubpXdSnSJSws2MKg0vfloGdvdq1_fNqZ68WlJ28TtXrXRWnf78CpvkcnES1Ic3XtDH8D_kBcGeFVg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Yu, P.F.</creator><creator>Feng, S.D.</creator><creator>Xu, G.S.</creator><creator>Guo, X.L.</creator><creator>Wang, Y.Y.</creator><creator>Zhao, W.</creator><creator>Qi, L.</creator><creator>Li, G.</creator><creator>Liaw, P.K.</creator><creator>Liu, R.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20141101</creationdate><title>Room-temperature creep resistance of Co-based metallic glasses</title><author>Yu, P.F. ; Feng, S.D. ; Xu, G.S. ; Guo, X.L. ; Wang, Y.Y. ; Zhao, W. ; Qi, L. ; Li, G. ; Liaw, P.K. ; Liu, R.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-2e579cf0a884aec896901cb4a65f6c785d8c297d099742f9531650f807a76ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amorphous materials</topic><topic>Creep (materials)</topic><topic>Creep resistance</topic><topic>Creep strength</topic><topic>Displacement</topic><topic>Mathematical models</topic><topic>Metallic glasses</topic><topic>Nanoindentation</topic><topic>Shear transformation zone</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, P.F.</creatorcontrib><creatorcontrib>Feng, S.D.</creatorcontrib><creatorcontrib>Xu, G.S.</creatorcontrib><creatorcontrib>Guo, X.L.</creatorcontrib><creatorcontrib>Wang, Y.Y.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Qi, L.</creatorcontrib><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Liaw, P.K.</creatorcontrib><creatorcontrib>Liu, R.P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, P.F.</au><au>Feng, S.D.</au><au>Xu, G.S.</au><au>Guo, X.L.</au><au>Wang, Y.Y.</au><au>Zhao, W.</au><au>Qi, L.</au><au>Li, G.</au><au>Liaw, P.K.</au><au>Liu, R.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature creep resistance of Co-based metallic glasses</atitle><jtitle>Scripta materialia</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>90-91</volume><issue>C</issue><spage>45</spage><epage>48</epage><pages>45-48</pages><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>The room-temperature creep resistance of the Co56Ta9B35 metallic glass was determined by a nanoindentation technique. Results showed that the creep curves were described by a generalized Kelvin model. The low creep strain-rate sensitivity parameter and creep rate derived from the displacement–holding time curves demonstrated the high creep resistance of the Co56Ta9B35 metallic glass. The deformation mechanism causing the nanoindentation creep was discussed based on the “shear transformation zone” concept, which gave an explanation for the creep behavior in metallic glasses.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2014.07.013</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6462
ispartof Scripta materialia, 2014-11, Vol.90-91 (C), p.45-48
issn 1359-6462
1872-8456
language eng
recordid cdi_osti_scitechconnect_1556488
source Elsevier ScienceDirect Journals Complete
subjects Amorphous materials
Creep (materials)
Creep resistance
Creep strength
Displacement
Mathematical models
Metallic glasses
Nanoindentation
Shear transformation zone
Transformations
title Room-temperature creep resistance of Co-based metallic glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20creep%20resistance%20of%20Co-based%20metallic%20glasses&rft.jtitle=Scripta%20materialia&rft.au=Yu,%20P.F.&rft.date=2014-11-01&rft.volume=90-91&rft.issue=C&rft.spage=45&rft.epage=48&rft.pages=45-48&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/j.scriptamat.2014.07.013&rft_dat=%3Cproquest_osti_%3E1651410620%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651410620&rft_id=info:pmid/&rft_els_id=S1359646214002954&rfr_iscdi=true