Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor
KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessib...
Gespeichert in:
Veröffentlicht in: | Cell 2018-01, Vol.172 (3), p.578-589.e17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589.e17 |
---|---|
container_issue | 3 |
container_start_page | 578 |
container_title | Cell |
container_volume | 172 |
creator | Janes, Matthew R. Zhang, Jingchuan Li, Lian-Sheng Hansen, Rasmus Peters, Ulf Guo, Xin Chen, Yuching Babbar, Anjali Firdaus, Sarah J. Darjania, Levan Feng, Jun Chen, Jeffrey H. Li, Shuangwei Li, Shisheng Long, Yun O. Thach, Carol Liu, Yuan Zarieh, Ata Ely, Tess Kucharski, Jeff M. Kessler, Linda V. Wu, Tao Yu, Ke Wang, Yi Yao, Yvonne Deng, Xiaohu Zarrinkar, Patrick P. Brehmer, Dirk Dhanak, Dashyant Lorenzi, Matthew V. Hu-Lowe, Dana Patricelli, Matthew P. Ren, Pingda Liu, Yi |
description | KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.
[Display omitted]
•ARS-1620, an atropisomeric selective KRASG12C inhibitor with desirable PK•ARS-1620 selectively induces tumor regression in patient-derived tumor models•KRAS dependency is more profound in vivo compared to 2D-monolayer cell culture•ARS-1620 is a valuable pharmacological tool to interrogate KRAS biology in vivo
A covalent inhibitor specific for G12C mutant KRAS induces tumor regression in in vivo models. |
doi_str_mv | 10.1016/j.cell.2018.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1550711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867418300412</els_id><sourcerecordid>1992018801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-8ba2a63fbf837e029ee7f1298a6de9f2a86e52dd109c836cae96b67e02e57b9f3</originalsourceid><addsrcrecordid>eNp9kE1P20AQhleIiqTAH-CALE5c7M6u4_2QuERWSFGpKhU4r9brMdkoscPuJlX_PV6FcuxppNHzvpp5CLmiUFCg_Nu6sLjZFAyoLIAWAPyETCkokc-oYKdkCqBYLrmYTcjXENYAIKuqOiMTpkpRyhKmZPFs_CtG179mP37Pn7Kf-2j6mNWmt-hD9sfFVWayejiYDY77JWV1_rRD6zpns4d-5RoXB39BvnRmE_DyY56Tl_vFc_09f_y1fKjnj7mdMRFz2RhmeNk1nSwFAlOIoqNMScNbVB0zkmPF2nb8wcqSW4OKNzyRWIlGdeU5uTn2DiE6HayLaFd26Hu0UdOqAkHpCN0eoZ0f3vYYot66kEyZHod90FSppExCQtkRtX4IwWOnd95tjf-rKejkWK91SuoU0ED16HgMXX_075sttp-Rf1JH4O4I4Kji4NCnS3EU2jqfDm0H97_-d7w_izE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992018801</pqid></control><display><type>article</type><title>Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Janes, Matthew R. ; Zhang, Jingchuan ; Li, Lian-Sheng ; Hansen, Rasmus ; Peters, Ulf ; Guo, Xin ; Chen, Yuching ; Babbar, Anjali ; Firdaus, Sarah J. ; Darjania, Levan ; Feng, Jun ; Chen, Jeffrey H. ; Li, Shuangwei ; Li, Shisheng ; Long, Yun O. ; Thach, Carol ; Liu, Yuan ; Zarieh, Ata ; Ely, Tess ; Kucharski, Jeff M. ; Kessler, Linda V. ; Wu, Tao ; Yu, Ke ; Wang, Yi ; Yao, Yvonne ; Deng, Xiaohu ; Zarrinkar, Patrick P. ; Brehmer, Dirk ; Dhanak, Dashyant ; Lorenzi, Matthew V. ; Hu-Lowe, Dana ; Patricelli, Matthew P. ; Ren, Pingda ; Liu, Yi</creator><creatorcontrib>Janes, Matthew R. ; Zhang, Jingchuan ; Li, Lian-Sheng ; Hansen, Rasmus ; Peters, Ulf ; Guo, Xin ; Chen, Yuching ; Babbar, Anjali ; Firdaus, Sarah J. ; Darjania, Levan ; Feng, Jun ; Chen, Jeffrey H. ; Li, Shuangwei ; Li, Shisheng ; Long, Yun O. ; Thach, Carol ; Liu, Yuan ; Zarieh, Ata ; Ely, Tess ; Kucharski, Jeff M. ; Kessler, Linda V. ; Wu, Tao ; Yu, Ke ; Wang, Yi ; Yao, Yvonne ; Deng, Xiaohu ; Zarrinkar, Patrick P. ; Brehmer, Dirk ; Dhanak, Dashyant ; Lorenzi, Matthew V. ; Hu-Lowe, Dana ; Patricelli, Matthew P. ; Ren, Pingda ; Liu, Yi</creatorcontrib><description>KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.
[Display omitted]
•ARS-1620, an atropisomeric selective KRASG12C inhibitor with desirable PK•ARS-1620 selectively induces tumor regression in patient-derived tumor models•KRAS dependency is more profound in vivo compared to 2D-monolayer cell culture•ARS-1620 is a valuable pharmacological tool to interrogate KRAS biology in vivo
A covalent inhibitor specific for G12C mutant KRAS induces tumor regression in in vivo models.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2018.01.006</identifier><identifier>PMID: 29373830</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3D culture ; addiction ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; ARS-1620 ; Cell Proliferation - drug effects ; Cells, Cultured ; dependence ; Female ; G12C ; HCT116 Cells ; HEK293 Cells ; Humans ; KRAS ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Molecular Docking Simulation ; Mutation ; Neoplasms, Experimental - drug therapy ; NSCLC ; oncogene ; Piperazines - chemistry ; Piperazines - pharmacology ; Piperazines - therapeutic use ; Protein Binding ; Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Quinazolines - chemistry ; Quinazolines - pharmacology ; Quinazolines - therapeutic use ; RAS</subject><ispartof>Cell, 2018-01, Vol.172 (3), p.578-589.e17</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-8ba2a63fbf837e029ee7f1298a6de9f2a86e52dd109c836cae96b67e02e57b9f3</citedby><cites>FETCH-LOGICAL-c427t-8ba2a63fbf837e029ee7f1298a6de9f2a86e52dd109c836cae96b67e02e57b9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867418300412$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29373830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1550711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Janes, Matthew R.</creatorcontrib><creatorcontrib>Zhang, Jingchuan</creatorcontrib><creatorcontrib>Li, Lian-Sheng</creatorcontrib><creatorcontrib>Hansen, Rasmus</creatorcontrib><creatorcontrib>Peters, Ulf</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Chen, Yuching</creatorcontrib><creatorcontrib>Babbar, Anjali</creatorcontrib><creatorcontrib>Firdaus, Sarah J.</creatorcontrib><creatorcontrib>Darjania, Levan</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Chen, Jeffrey H.</creatorcontrib><creatorcontrib>Li, Shuangwei</creatorcontrib><creatorcontrib>Li, Shisheng</creatorcontrib><creatorcontrib>Long, Yun O.</creatorcontrib><creatorcontrib>Thach, Carol</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Zarieh, Ata</creatorcontrib><creatorcontrib>Ely, Tess</creatorcontrib><creatorcontrib>Kucharski, Jeff M.</creatorcontrib><creatorcontrib>Kessler, Linda V.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Yao, Yvonne</creatorcontrib><creatorcontrib>Deng, Xiaohu</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P.</creatorcontrib><creatorcontrib>Brehmer, Dirk</creatorcontrib><creatorcontrib>Dhanak, Dashyant</creatorcontrib><creatorcontrib>Lorenzi, Matthew V.</creatorcontrib><creatorcontrib>Hu-Lowe, Dana</creatorcontrib><creatorcontrib>Patricelli, Matthew P.</creatorcontrib><creatorcontrib>Ren, Pingda</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><title>Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor</title><title>Cell</title><addtitle>Cell</addtitle><description>KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.
[Display omitted]
•ARS-1620, an atropisomeric selective KRASG12C inhibitor with desirable PK•ARS-1620 selectively induces tumor regression in patient-derived tumor models•KRAS dependency is more profound in vivo compared to 2D-monolayer cell culture•ARS-1620 is a valuable pharmacological tool to interrogate KRAS biology in vivo
A covalent inhibitor specific for G12C mutant KRAS induces tumor regression in in vivo models.</description><subject>3D culture</subject><subject>addiction</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>ARS-1620</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>dependence</subject><subject>Female</subject><subject>G12C</subject><subject>HCT116 Cells</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>KRAS</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Molecular Docking Simulation</subject><subject>Mutation</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>NSCLC</subject><subject>oncogene</subject><subject>Piperazines - chemistry</subject><subject>Piperazines - pharmacology</subject><subject>Piperazines - therapeutic use</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Quinazolines - chemistry</subject><subject>Quinazolines - pharmacology</subject><subject>Quinazolines - therapeutic use</subject><subject>RAS</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P20AQhleIiqTAH-CALE5c7M6u4_2QuERWSFGpKhU4r9brMdkoscPuJlX_PV6FcuxppNHzvpp5CLmiUFCg_Nu6sLjZFAyoLIAWAPyETCkokc-oYKdkCqBYLrmYTcjXENYAIKuqOiMTpkpRyhKmZPFs_CtG179mP37Pn7Kf-2j6mNWmt-hD9sfFVWayejiYDY77JWV1_rRD6zpns4d-5RoXB39BvnRmE_DyY56Tl_vFc_09f_y1fKjnj7mdMRFz2RhmeNk1nSwFAlOIoqNMScNbVB0zkmPF2nb8wcqSW4OKNzyRWIlGdeU5uTn2DiE6HayLaFd26Hu0UdOqAkHpCN0eoZ0f3vYYot66kEyZHod90FSppExCQtkRtX4IwWOnd95tjf-rKejkWK91SuoU0ED16HgMXX_075sttp-Rf1JH4O4I4Kji4NCnS3EU2jqfDm0H97_-d7w_izE</recordid><startdate>20180125</startdate><enddate>20180125</enddate><creator>Janes, Matthew R.</creator><creator>Zhang, Jingchuan</creator><creator>Li, Lian-Sheng</creator><creator>Hansen, Rasmus</creator><creator>Peters, Ulf</creator><creator>Guo, Xin</creator><creator>Chen, Yuching</creator><creator>Babbar, Anjali</creator><creator>Firdaus, Sarah J.</creator><creator>Darjania, Levan</creator><creator>Feng, Jun</creator><creator>Chen, Jeffrey H.</creator><creator>Li, Shuangwei</creator><creator>Li, Shisheng</creator><creator>Long, Yun O.</creator><creator>Thach, Carol</creator><creator>Liu, Yuan</creator><creator>Zarieh, Ata</creator><creator>Ely, Tess</creator><creator>Kucharski, Jeff M.</creator><creator>Kessler, Linda V.</creator><creator>Wu, Tao</creator><creator>Yu, Ke</creator><creator>Wang, Yi</creator><creator>Yao, Yvonne</creator><creator>Deng, Xiaohu</creator><creator>Zarrinkar, Patrick P.</creator><creator>Brehmer, Dirk</creator><creator>Dhanak, Dashyant</creator><creator>Lorenzi, Matthew V.</creator><creator>Hu-Lowe, Dana</creator><creator>Patricelli, Matthew P.</creator><creator>Ren, Pingda</creator><creator>Liu, Yi</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20180125</creationdate><title>Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor</title><author>Janes, Matthew R. ; Zhang, Jingchuan ; Li, Lian-Sheng ; Hansen, Rasmus ; Peters, Ulf ; Guo, Xin ; Chen, Yuching ; Babbar, Anjali ; Firdaus, Sarah J. ; Darjania, Levan ; Feng, Jun ; Chen, Jeffrey H. ; Li, Shuangwei ; Li, Shisheng ; Long, Yun O. ; Thach, Carol ; Liu, Yuan ; Zarieh, Ata ; Ely, Tess ; Kucharski, Jeff M. ; Kessler, Linda V. ; Wu, Tao ; Yu, Ke ; Wang, Yi ; Yao, Yvonne ; Deng, Xiaohu ; Zarrinkar, Patrick P. ; Brehmer, Dirk ; Dhanak, Dashyant ; Lorenzi, Matthew V. ; Hu-Lowe, Dana ; Patricelli, Matthew P. ; Ren, Pingda ; Liu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-8ba2a63fbf837e029ee7f1298a6de9f2a86e52dd109c836cae96b67e02e57b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D culture</topic><topic>addiction</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>ARS-1620</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>dependence</topic><topic>Female</topic><topic>G12C</topic><topic>HCT116 Cells</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>KRAS</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Molecular Docking Simulation</topic><topic>Mutation</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>NSCLC</topic><topic>oncogene</topic><topic>Piperazines - chemistry</topic><topic>Piperazines - pharmacology</topic><topic>Piperazines - therapeutic use</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Quinazolines - chemistry</topic><topic>Quinazolines - pharmacology</topic><topic>Quinazolines - therapeutic use</topic><topic>RAS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janes, Matthew R.</creatorcontrib><creatorcontrib>Zhang, Jingchuan</creatorcontrib><creatorcontrib>Li, Lian-Sheng</creatorcontrib><creatorcontrib>Hansen, Rasmus</creatorcontrib><creatorcontrib>Peters, Ulf</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Chen, Yuching</creatorcontrib><creatorcontrib>Babbar, Anjali</creatorcontrib><creatorcontrib>Firdaus, Sarah J.</creatorcontrib><creatorcontrib>Darjania, Levan</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Chen, Jeffrey H.</creatorcontrib><creatorcontrib>Li, Shuangwei</creatorcontrib><creatorcontrib>Li, Shisheng</creatorcontrib><creatorcontrib>Long, Yun O.</creatorcontrib><creatorcontrib>Thach, Carol</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Zarieh, Ata</creatorcontrib><creatorcontrib>Ely, Tess</creatorcontrib><creatorcontrib>Kucharski, Jeff M.</creatorcontrib><creatorcontrib>Kessler, Linda V.</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Yao, Yvonne</creatorcontrib><creatorcontrib>Deng, Xiaohu</creatorcontrib><creatorcontrib>Zarrinkar, Patrick P.</creatorcontrib><creatorcontrib>Brehmer, Dirk</creatorcontrib><creatorcontrib>Dhanak, Dashyant</creatorcontrib><creatorcontrib>Lorenzi, Matthew V.</creatorcontrib><creatorcontrib>Hu-Lowe, Dana</creatorcontrib><creatorcontrib>Patricelli, Matthew P.</creatorcontrib><creatorcontrib>Ren, Pingda</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janes, Matthew R.</au><au>Zhang, Jingchuan</au><au>Li, Lian-Sheng</au><au>Hansen, Rasmus</au><au>Peters, Ulf</au><au>Guo, Xin</au><au>Chen, Yuching</au><au>Babbar, Anjali</au><au>Firdaus, Sarah J.</au><au>Darjania, Levan</au><au>Feng, Jun</au><au>Chen, Jeffrey H.</au><au>Li, Shuangwei</au><au>Li, Shisheng</au><au>Long, Yun O.</au><au>Thach, Carol</au><au>Liu, Yuan</au><au>Zarieh, Ata</au><au>Ely, Tess</au><au>Kucharski, Jeff M.</au><au>Kessler, Linda V.</au><au>Wu, Tao</au><au>Yu, Ke</au><au>Wang, Yi</au><au>Yao, Yvonne</au><au>Deng, Xiaohu</au><au>Zarrinkar, Patrick P.</au><au>Brehmer, Dirk</au><au>Dhanak, Dashyant</au><au>Lorenzi, Matthew V.</au><au>Hu-Lowe, Dana</au><au>Patricelli, Matthew P.</au><au>Ren, Pingda</au><au>Liu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2018-01-25</date><risdate>2018</risdate><volume>172</volume><issue>3</issue><spage>578</spage><epage>589.e17</epage><pages>578-589.e17</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.
[Display omitted]
•ARS-1620, an atropisomeric selective KRASG12C inhibitor with desirable PK•ARS-1620 selectively induces tumor regression in patient-derived tumor models•KRAS dependency is more profound in vivo compared to 2D-monolayer cell culture•ARS-1620 is a valuable pharmacological tool to interrogate KRAS biology in vivo
A covalent inhibitor specific for G12C mutant KRAS induces tumor regression in in vivo models.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29373830</pmid><doi>10.1016/j.cell.2018.01.006</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2018-01, Vol.172 (3), p.578-589.e17 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_osti_scitechconnect_1550711 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | 3D culture addiction Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use ARS-1620 Cell Proliferation - drug effects Cells, Cultured dependence Female G12C HCT116 Cells HEK293 Cells Humans KRAS Male Mice Mice, Inbred BALB C Mice, Nude Molecular Docking Simulation Mutation Neoplasms, Experimental - drug therapy NSCLC oncogene Piperazines - chemistry Piperazines - pharmacology Piperazines - therapeutic use Protein Binding Proto-Oncogene Proteins p21(ras) - antagonists & inhibitors Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Quinazolines - chemistry Quinazolines - pharmacology Quinazolines - therapeutic use RAS |
title | Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20KRAS%20Mutant%20Cancers%20with%20a%20Covalent%20G12C-Specific%20Inhibitor&rft.jtitle=Cell&rft.au=Janes,%20Matthew%20R.&rft.date=2018-01-25&rft.volume=172&rft.issue=3&rft.spage=578&rft.epage=589.e17&rft.pages=578-589.e17&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2018.01.006&rft_dat=%3Cproquest_osti_%3E1992018801%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992018801&rft_id=info:pmid/29373830&rft_els_id=S0092867418300412&rfr_iscdi=true |