Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism

Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500–750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emergin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2017-08, Vol.215 (C), p.122-131
Hauptverfasser: Rossi, Lorenzo, Borghi, Monica, Yang, Jinfen, Xie, De-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue C
container_start_page 122
container_title Journal of plant physiology
container_volume 215
creator Rossi, Lorenzo
Borghi, Monica
Yang, Jinfen
Xie, De-Yu
description Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500–750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO2 assimilation rate, intracellular CO2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission.
doi_str_mv 10.1016/j.jplph.2017.06.005
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1550357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0176161717301645</els_id><sourcerecordid>1939226834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-7f268a341a72cc3806fc917e03c63e5cd20d7706d9107b86a073a045d6ecc2bf3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEokvhCZCQBZdeEuw4tpMDh2pFAalSOcDZ8jqTrleJHTzOQm-8BQ_Ei-GwhQMHTtaMv3_s-f-ieM5oxSiTrw_VYR7nfVVTpioqK0rFg2LDJGtLxuv2YbHJF7LMDXVWPEE80FyLlj8uzupWNk2n6Kb4fnOECN_mCIgueBIG8jHMy7jgzx_WeEALHonDkAkPBO982hsEcrtWzpOtmWB03hA0yR0NGcH0SFIgZkwQcy-sck9cQnIbw9e0J8b3ZIJkdmF0OD0tHg1mRHh2f54Xn6_eftq-L69v3n3YXl6XtmmoKNVQy9bwhhlVW8tbKgfbMQWUW8lB2L6mvVJU9h2jatdKQxU3tBG9BGvr3cDPi5enuQGT02hdAru3wXuwSTMhKBcqQxcnaI7hywKY9OSyA-OYnQgLatYxzjsphMjoq3_QQ1iizytkind1_i5vMsVPlI0BMcKg5-gmE-80o3pNUR_07xT1mqKmUucUs-rF_exlN0H_V_Mntgy8OQGQHTs6iOtC4C30Lq779MH994Ff7WmwoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939226834</pqid></control><display><type>article</type><title>Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Rossi, Lorenzo ; Borghi, Monica ; Yang, Jinfen ; Xie, De-Yu</creator><creatorcontrib>Rossi, Lorenzo ; Borghi, Monica ; Yang, Jinfen ; Xie, De-Yu</creatorcontrib><description>Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500–750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO2 assimilation rate, intracellular CO2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission.</description><identifier>ISSN: 0176-1617</identifier><identifier>EISSN: 1618-1328</identifier><identifier>DOI: 10.1016/j.jplph.2017.06.005</identifier><identifier>PMID: 28644970</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>1,3-Butadiene ; Alkyl and Aryl Transferases - genetics ; Alkyl and Aryl Transferases - metabolism ; Biodiesel fuels ; Biofuels ; Biomass ; Butadiene ; Butadienes - metabolism ; Camelina ; Camellia - enzymology ; Camellia - growth &amp; development ; Camellia - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Chlorophyll ; Conductance ; Diurnal ; Emission ; Emission measurements ; Emissions ; Fast Isoprene Sensor ; Flowers &amp; plants ; Gene expression ; Genes ; Genotypes ; Hemiterpenes - metabolism ; Isoprene ; Leaves ; Mesophyll ; Metabolism ; Nocturnal ; Pentanes - metabolism ; Phosphates ; Photosynthesis ; Photosynthesis - genetics ; Photosynthesis - physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants (botany) ; Poplar ; Populus - enzymology ; Populus - growth &amp; development ; Populus - metabolism ; Resistance ; Shrubs ; Terpenes - metabolism ; Terpenoids ; Transgenic plants</subject><ispartof>Journal of plant physiology, 2017-08, Vol.215 (C), p.122-131</ispartof><rights>2017 Elsevier GmbH</rights><rights>Copyright © 2017 Elsevier GmbH. All rights reserved.</rights><rights>Copyright Urban &amp; Fischer Verlag Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-7f268a341a72cc3806fc917e03c63e5cd20d7706d9107b86a073a045d6ecc2bf3</citedby><cites>FETCH-LOGICAL-c4405-7f268a341a72cc3806fc917e03c63e5cd20d7706d9107b86a073a045d6ecc2bf3</cites><orcidid>0000-0003-1359-7611 ; 0000-0001-8612-292X ; 000000018612292X ; 0000000313597611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0176161717301645$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28644970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1550357$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi, Lorenzo</creatorcontrib><creatorcontrib>Borghi, Monica</creatorcontrib><creatorcontrib>Yang, Jinfen</creatorcontrib><creatorcontrib>Xie, De-Yu</creatorcontrib><title>Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism</title><title>Journal of plant physiology</title><addtitle>J Plant Physiol</addtitle><description>Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500–750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO2 assimilation rate, intracellular CO2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission.</description><subject>1,3-Butadiene</subject><subject>Alkyl and Aryl Transferases - genetics</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Butadiene</subject><subject>Butadienes - metabolism</subject><subject>Camelina</subject><subject>Camellia - enzymology</subject><subject>Camellia - growth &amp; development</subject><subject>Camellia - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chlorophyll</subject><subject>Conductance</subject><subject>Diurnal</subject><subject>Emission</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Fast Isoprene Sensor</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Hemiterpenes - metabolism</subject><subject>Isoprene</subject><subject>Leaves</subject><subject>Mesophyll</subject><subject>Metabolism</subject><subject>Nocturnal</subject><subject>Pentanes - metabolism</subject><subject>Phosphates</subject><subject>Photosynthesis</subject><subject>Photosynthesis - genetics</subject><subject>Photosynthesis - physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants (botany)</subject><subject>Poplar</subject><subject>Populus - enzymology</subject><subject>Populus - growth &amp; development</subject><subject>Populus - metabolism</subject><subject>Resistance</subject><subject>Shrubs</subject><subject>Terpenes - metabolism</subject><subject>Terpenoids</subject><subject>Transgenic plants</subject><issn>0176-1617</issn><issn>1618-1328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhiMEokvhCZCQBZdeEuw4tpMDh2pFAalSOcDZ8jqTrleJHTzOQm-8BQ_Ei-GwhQMHTtaMv3_s-f-ieM5oxSiTrw_VYR7nfVVTpioqK0rFg2LDJGtLxuv2YbHJF7LMDXVWPEE80FyLlj8uzupWNk2n6Kb4fnOECN_mCIgueBIG8jHMy7jgzx_WeEALHonDkAkPBO982hsEcrtWzpOtmWB03hA0yR0NGcH0SFIgZkwQcy-sck9cQnIbw9e0J8b3ZIJkdmF0OD0tHg1mRHh2f54Xn6_eftq-L69v3n3YXl6XtmmoKNVQy9bwhhlVW8tbKgfbMQWUW8lB2L6mvVJU9h2jatdKQxU3tBG9BGvr3cDPi5enuQGT02hdAru3wXuwSTMhKBcqQxcnaI7hywKY9OSyA-OYnQgLatYxzjsphMjoq3_QQ1iizytkind1_i5vMsVPlI0BMcKg5-gmE-80o3pNUR_07xT1mqKmUucUs-rF_exlN0H_V_Mntgy8OQGQHTs6iOtC4C30Lq779MH994Ff7WmwoQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Rossi, Lorenzo</creator><creator>Borghi, Monica</creator><creator>Yang, Jinfen</creator><creator>Xie, De-Yu</creator><general>Elsevier GmbH</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1359-7611</orcidid><orcidid>https://orcid.org/0000-0001-8612-292X</orcidid><orcidid>https://orcid.org/000000018612292X</orcidid><orcidid>https://orcid.org/0000000313597611</orcidid></search><sort><creationdate>201708</creationdate><title>Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism</title><author>Rossi, Lorenzo ; Borghi, Monica ; Yang, Jinfen ; Xie, De-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-7f268a341a72cc3806fc917e03c63e5cd20d7706d9107b86a073a045d6ecc2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1,3-Butadiene</topic><topic>Alkyl and Aryl Transferases - genetics</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Butadiene</topic><topic>Butadienes - metabolism</topic><topic>Camelina</topic><topic>Camellia - enzymology</topic><topic>Camellia - growth &amp; development</topic><topic>Camellia - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chlorophyll</topic><topic>Conductance</topic><topic>Diurnal</topic><topic>Emission</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Fast Isoprene Sensor</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Hemiterpenes - metabolism</topic><topic>Isoprene</topic><topic>Leaves</topic><topic>Mesophyll</topic><topic>Metabolism</topic><topic>Nocturnal</topic><topic>Pentanes - metabolism</topic><topic>Phosphates</topic><topic>Photosynthesis</topic><topic>Photosynthesis - genetics</topic><topic>Photosynthesis - physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants (botany)</topic><topic>Poplar</topic><topic>Populus - enzymology</topic><topic>Populus - growth &amp; development</topic><topic>Populus - metabolism</topic><topic>Resistance</topic><topic>Shrubs</topic><topic>Terpenes - metabolism</topic><topic>Terpenoids</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Lorenzo</creatorcontrib><creatorcontrib>Borghi, Monica</creatorcontrib><creatorcontrib>Yang, Jinfen</creatorcontrib><creatorcontrib>Xie, De-Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of plant physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, Lorenzo</au><au>Borghi, Monica</au><au>Yang, Jinfen</au><au>Xie, De-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism</atitle><jtitle>Journal of plant physiology</jtitle><addtitle>J Plant Physiol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>215</volume><issue>C</issue><spage>122</spage><epage>131</epage><pages>122-131</pages><issn>0176-1617</issn><eissn>1618-1328</eissn><abstract>Isoprene (2-methyl-1,3-butadiene) is a hemiterpene molecule. It has been estimated that the plant kingdom emits 500–750 million tons of isoprene in the environment, half of which results from tropical broadleaf trees and the remainder from shrubs. Camelina (Camelina sativa (L.) Crantz) is an emerging bioenergy plant for biodiesel. In this study, we characterized isoprene formation following a diurnal/nocturnal cycle in wild-type Camelina plants. To understand the potential effects of isoprene emission on this herbaceous plant, a gray poplar Populus×canescens isoprene synthase gene (PcISPS) was overexpressed in Camelina. Transgenic plants showed increased isoprene production, and the emissions were characterized by a diurnal/nocturnal cycle. Measurements of the expression of six genes of the plastidial 2-C-methyl-d-erythriol-4-phosphate (MEP) pathway revealed that the expression patterns of three key genes were associated with isoprene formation dynamics in the three genotypic plants. Conversely, dissimilar gene expression levels existed in different genotypes, indicating that dynamics and variations occurred among plants. Moreover, transgenic plants grew shorter and developed smaller leaves than the wild-type and empty vector control transgenic plants. Photosynthetic analysis showed that the CO2 assimilation rate, intracellular CO2 concentration, mesophyll conductance and contents of chlorophylls a and b were similar among PcISPS transgenic, empty-vector control transgenic, and wild-type plants, indicating that the transgene did not negatively affect photosynthesis. Based on these results, we suggest that the reduced biomass was likely a trade-off consequence of the increased isoprene emission.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>28644970</pmid><doi>10.1016/j.jplph.2017.06.005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1359-7611</orcidid><orcidid>https://orcid.org/0000-0001-8612-292X</orcidid><orcidid>https://orcid.org/000000018612292X</orcidid><orcidid>https://orcid.org/0000000313597611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0176-1617
ispartof Journal of plant physiology, 2017-08, Vol.215 (C), p.122-131
issn 0176-1617
1618-1328
language eng
recordid cdi_osti_scitechconnect_1550357
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 1,3-Butadiene
Alkyl and Aryl Transferases - genetics
Alkyl and Aryl Transferases - metabolism
Biodiesel fuels
Biofuels
Biomass
Butadiene
Butadienes - metabolism
Camelina
Camellia - enzymology
Camellia - growth & development
Camellia - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Chlorophyll
Conductance
Diurnal
Emission
Emission measurements
Emissions
Fast Isoprene Sensor
Flowers & plants
Gene expression
Genes
Genotypes
Hemiterpenes - metabolism
Isoprene
Leaves
Mesophyll
Metabolism
Nocturnal
Pentanes - metabolism
Phosphates
Photosynthesis
Photosynthesis - genetics
Photosynthesis - physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plants (botany)
Poplar
Populus - enzymology
Populus - growth & development
Populus - metabolism
Resistance
Shrubs
Terpenes - metabolism
Terpenoids
Transgenic plants
title Overexpression of Populus×canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20Populus%C3%97canescens%20isoprene%20synthase%20gene%20in%20Camelina%20sativa%20leads%20to%20alterations%20in%20its%20growth%20and%20metabolism&rft.jtitle=Journal%20of%20plant%20physiology&rft.au=Rossi,%20Lorenzo&rft.date=2017-08&rft.volume=215&rft.issue=C&rft.spage=122&rft.epage=131&rft.pages=122-131&rft.issn=0176-1617&rft.eissn=1618-1328&rft_id=info:doi/10.1016/j.jplph.2017.06.005&rft_dat=%3Cproquest_osti_%3E1939226834%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939226834&rft_id=info:pmid/28644970&rft_els_id=S0176161717301645&rfr_iscdi=true