A simple and fast method for computing the Poisson binomial distribution function
It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractabilit...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2018-06, Vol.122 (C), p.92-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | C |
container_start_page | 92 |
container_title | Computational statistics & data analysis |
container_volume | 122 |
creator | Biscarri, William Zhao, Sihai Dave Brunner, Robert J. |
description | It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed. |
doi_str_mv | 10.1016/j.csda.2018.01.007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1548776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947318300082</els_id><sourcerecordid>S0167947318300082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFVwP2Mek0kG3JTiCwoq6Dpk8rApnaQkUfDfm6GuXd3D5TuHwwHgGqMWI9zf7lqdjWoJwqJFuEWIn4AFFpw0nDJyChYV4s3QcXoOLnLeIYRIx8UCvK1g9tNhb6EKBjqVC5xs2caqY4I6Toev4sMnLFsLX6PPOQY4-hAnr_bQ-FySHytRv-4r6FlcgjOn9tle_d0l-Hi4f18_NZuXx-f1atNoynFpdNcNtlfU9WLAhvesHwjtrWbE1d6OCYUEFm4caUcR1YMaCEOCGGRqcYYdXYKbY27MxcusfbF6q2MIVheJWSc47ytEjpBOMedknTwkP6n0IzGS83JyJ-fl5LycRFjW5arp7miytf63t2lOt0Fb49McbqL_z_4LcKt2og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simple and fast method for computing the Poisson binomial distribution function</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</creator><creatorcontrib>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</creatorcontrib><description>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2018.01.007</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Convolution ; Fourier transform ; Independent Bernoulli sum ; Poisson binomial</subject><ispartof>Computational statistics & data analysis, 2018-06, Vol.122 (C), p.92-100</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</citedby><cites>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947318300082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1548776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biscarri, William</creatorcontrib><creatorcontrib>Zhao, Sihai Dave</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><title>A simple and fast method for computing the Poisson binomial distribution function</title><title>Computational statistics & data analysis</title><description>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</description><subject>Convolution</subject><subject>Fourier transform</subject><subject>Independent Bernoulli sum</subject><subject>Poisson binomial</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFVwP2Mek0kG3JTiCwoq6Dpk8rApnaQkUfDfm6GuXd3D5TuHwwHgGqMWI9zf7lqdjWoJwqJFuEWIn4AFFpw0nDJyChYV4s3QcXoOLnLeIYRIx8UCvK1g9tNhb6EKBjqVC5xs2caqY4I6Toev4sMnLFsLX6PPOQY4-hAnr_bQ-FySHytRv-4r6FlcgjOn9tle_d0l-Hi4f18_NZuXx-f1atNoynFpdNcNtlfU9WLAhvesHwjtrWbE1d6OCYUEFm4caUcR1YMaCEOCGGRqcYYdXYKbY27MxcusfbF6q2MIVheJWSc47ytEjpBOMedknTwkP6n0IzGS83JyJ-fl5LycRFjW5arp7miytf63t2lOt0Fb49McbqL_z_4LcKt2og</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Biscarri, William</creator><creator>Zhao, Sihai Dave</creator><creator>Brunner, Robert J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201806</creationdate><title>A simple and fast method for computing the Poisson binomial distribution function</title><author>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convolution</topic><topic>Fourier transform</topic><topic>Independent Bernoulli sum</topic><topic>Poisson binomial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biscarri, William</creatorcontrib><creatorcontrib>Zhao, Sihai Dave</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biscarri, William</au><au>Zhao, Sihai Dave</au><au>Brunner, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple and fast method for computing the Poisson binomial distribution function</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2018-06</date><risdate>2018</risdate><volume>122</volume><issue>C</issue><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2018.01.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2018-06, Vol.122 (C), p.92-100 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_osti_scitechconnect_1548776 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Convolution Fourier transform Independent Bernoulli sum Poisson binomial |
title | A simple and fast method for computing the Poisson binomial distribution function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20and%20fast%20method%20for%20computing%20the%20Poisson%20binomial%20distribution%20function&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Biscarri,%20William&rft.date=2018-06&rft.volume=122&rft.issue=C&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2018.01.007&rft_dat=%3Celsevier_osti_%3ES0167947318300082%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167947318300082&rfr_iscdi=true |