A simple and fast method for computing the Poisson binomial distribution function

It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2018-06, Vol.122 (C), p.92-100
Hauptverfasser: Biscarri, William, Zhao, Sihai Dave, Brunner, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue C
container_start_page 92
container_title Computational statistics & data analysis
container_volume 122
creator Biscarri, William
Zhao, Sihai Dave
Brunner, Robert J.
description It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.
doi_str_mv 10.1016/j.csda.2018.01.007
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1548776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947318300082</els_id><sourcerecordid>S0167947318300082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFVwP2Mek0kG3JTiCwoq6Dpk8rApnaQkUfDfm6GuXd3D5TuHwwHgGqMWI9zf7lqdjWoJwqJFuEWIn4AFFpw0nDJyChYV4s3QcXoOLnLeIYRIx8UCvK1g9tNhb6EKBjqVC5xs2caqY4I6Toev4sMnLFsLX6PPOQY4-hAnr_bQ-FySHytRv-4r6FlcgjOn9tle_d0l-Hi4f18_NZuXx-f1atNoynFpdNcNtlfU9WLAhvesHwjtrWbE1d6OCYUEFm4caUcR1YMaCEOCGGRqcYYdXYKbY27MxcusfbF6q2MIVheJWSc47ytEjpBOMedknTwkP6n0IzGS83JyJ-fl5LycRFjW5arp7miytf63t2lOt0Fb49McbqL_z_4LcKt2og</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A simple and fast method for computing the Poisson binomial distribution function</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</creator><creatorcontrib>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</creatorcontrib><description>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2018.01.007</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Convolution ; Fourier transform ; Independent Bernoulli sum ; Poisson binomial</subject><ispartof>Computational statistics &amp; data analysis, 2018-06, Vol.122 (C), p.92-100</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</citedby><cites>FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947318300082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1548776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biscarri, William</creatorcontrib><creatorcontrib>Zhao, Sihai Dave</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><title>A simple and fast method for computing the Poisson binomial distribution function</title><title>Computational statistics &amp; data analysis</title><description>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</description><subject>Convolution</subject><subject>Fourier transform</subject><subject>Independent Bernoulli sum</subject><subject>Poisson binomial</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFVwP2Mek0kG3JTiCwoq6Dpk8rApnaQkUfDfm6GuXd3D5TuHwwHgGqMWI9zf7lqdjWoJwqJFuEWIn4AFFpw0nDJyChYV4s3QcXoOLnLeIYRIx8UCvK1g9tNhb6EKBjqVC5xs2caqY4I6Toev4sMnLFsLX6PPOQY4-hAnr_bQ-FySHytRv-4r6FlcgjOn9tle_d0l-Hi4f18_NZuXx-f1atNoynFpdNcNtlfU9WLAhvesHwjtrWbE1d6OCYUEFm4caUcR1YMaCEOCGGRqcYYdXYKbY27MxcusfbF6q2MIVheJWSc47ytEjpBOMedknTwkP6n0IzGS83JyJ-fl5LycRFjW5arp7miytf63t2lOt0Fb49McbqL_z_4LcKt2og</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Biscarri, William</creator><creator>Zhao, Sihai Dave</creator><creator>Brunner, Robert J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201806</creationdate><title>A simple and fast method for computing the Poisson binomial distribution function</title><author>Biscarri, William ; Zhao, Sihai Dave ; Brunner, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c449e6a3f6891d76569236ec52f187f58a0818fbb34303c9a925082d0d24751f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convolution</topic><topic>Fourier transform</topic><topic>Independent Bernoulli sum</topic><topic>Poisson binomial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biscarri, William</creatorcontrib><creatorcontrib>Zhao, Sihai Dave</creatorcontrib><creatorcontrib>Brunner, Robert J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biscarri, William</au><au>Zhao, Sihai Dave</au><au>Brunner, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple and fast method for computing the Poisson binomial distribution function</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2018-06</date><risdate>2018</risdate><volume>122</volume><issue>C</issue><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>It is shown that the Poisson binomial distribution function can be efficiently calculated using simple convolution based methods. The Poisson binomial distribution describes how the sum of independent but not identically distributed Bernoulli random variables is distributed. Due to the intractability of the Poisson binomial distribution function, efficient methods for computing it have been of particular interest in past Statistical literature. First, it is demonstrated that simply and directly using the definition of the distribution function of a sum of random variables can calculate the Poisson binomial distribution function efficiently. A modified, tree structured Fourier transform convolution scheme is then presented, which provides even greater gains in efficiency. Both approaches are shown to outperform the current state of the art methods in terms of accuracy and speed. The methods are then evaluated on a real data image processing example in order to demonstrate the efficiency advantages of the proposed methods in practical cases. Finally, possible extensions for using convolution based methods to calculate other distribution functions are discussed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2018.01.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2018-06, Vol.122 (C), p.92-100
issn 0167-9473
1872-7352
language eng
recordid cdi_osti_scitechconnect_1548776
source ScienceDirect Journals (5 years ago - present)
subjects Convolution
Fourier transform
Independent Bernoulli sum
Poisson binomial
title A simple and fast method for computing the Poisson binomial distribution function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20and%20fast%20method%20for%20computing%20the%20Poisson%20binomial%20distribution%20function&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Biscarri,%20William&rft.date=2018-06&rft.volume=122&rft.issue=C&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2018.01.007&rft_dat=%3Celsevier_osti_%3ES0167947318300082%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167947318300082&rfr_iscdi=true