Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection

In this study, boron-doped and defect-engineered graphene aerogels are prepared using triphenyl boron as a boron precursor and subsequent heat treatments. The boron chemistry and concentration in the graphene lattice are found to be highly dependent on the temperature used to activate boron. At 1500...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-09, Vol.122 (35), p.20358-20365
Hauptverfasser: Turner, Sally, Yan, Wenjun, Long, Hu, Nelson, Art J., Baker, Alex, Lee, Jonathan R. I., Carraro, Carlo, Worsley, Marcus A., Maboudian, Roya, Zettl, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20365
container_issue 35
container_start_page 20358
container_title Journal of physical chemistry. C
container_volume 122
creator Turner, Sally
Yan, Wenjun
Long, Hu
Nelson, Art J.
Baker, Alex
Lee, Jonathan R. I.
Carraro, Carlo
Worsley, Marcus A.
Maboudian, Roya
Zettl, Alex
description In this study, boron-doped and defect-engineered graphene aerogels are prepared using triphenyl boron as a boron precursor and subsequent heat treatments. The boron chemistry and concentration in the graphene lattice are found to be highly dependent on the temperature used to activate boron. At 1500 °C, boron is incorporated at 3.2 atom % through a combination of B–C, B–N, and B–O bonds. At 1750 °C, the boron concentration decreases to 0.7 atom % and is predominantly incorporated through B–N bonding. Higher temperatures result in complete expulsion of boron from the lattice, leaving behind defects that are found to be beneficial for NO2 gas detection. The gas sensing properties are explored to gain insight into the impact of boron chemistry on the sensing performance. A highly sensitive and selective conductometric NO2 sensor is fabricated on a low-power microheater. Defect-engineered graphene aerogels with no boron remaining have superior gas detection properties. At an optimum sensing temperature of 240 °C, the defect-engineered aerogel has a theoretical detection limit of 7 ppb for NO2 and response and recovery times of 100 and 300 s, respectively, with excellent selectivity over ammonia and hydrogen. Lastly, the superior gas sensing performance of defect-engineered graphene aerogels has remarkable implications for their performance in catalysis and energy storage applications.
doi_str_mv 10.1021/acs.jpcc.8b05984
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1548340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1021_acs_jpcc_8b05984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1150-891eae718c2f70f317c9fccecc9b7f36d75d9e5250d197d616a7b5011f0a431c3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjePTbeFzvbLd09IiCaELnIxUtTZqdQgi1pNyb-e5dAPM1k8n5MHsYeQYxAlPBsMY_2R8RRvRGqqasrNoBGloWulLr-3yt9y-5y3guhpAA5YF8vMcXAZ_How5bb0PIZOcKOz8PWB6J0OkfHF8kedxSITyjFLR0ydzHx9aFLNlPIvvM_xD9WvOz9Xe_3MdyzG2cPmR4uc8jWr_PP6VuxXC3ep5NlgQBKFHUDZElDjaXTwknQ2DhEQmw22slxq1XbkCqVaKHR7RjGVm-UAHDCVhJQDtnTOTfmzpuMvu_fYQyhf8OAqmpZiV4kziJMMedEzhyT_7bp14AwJ4CmB2hOAM0FoPwDlrhlcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection</title><source>ACS Publications</source><creator>Turner, Sally ; Yan, Wenjun ; Long, Hu ; Nelson, Art J. ; Baker, Alex ; Lee, Jonathan R. I. ; Carraro, Carlo ; Worsley, Marcus A. ; Maboudian, Roya ; Zettl, Alex</creator><creatorcontrib>Turner, Sally ; Yan, Wenjun ; Long, Hu ; Nelson, Art J. ; Baker, Alex ; Lee, Jonathan R. I. ; Carraro, Carlo ; Worsley, Marcus A. ; Maboudian, Roya ; Zettl, Alex ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>In this study, boron-doped and defect-engineered graphene aerogels are prepared using triphenyl boron as a boron precursor and subsequent heat treatments. The boron chemistry and concentration in the graphene lattice are found to be highly dependent on the temperature used to activate boron. At 1500 °C, boron is incorporated at 3.2 atom % through a combination of B–C, B–N, and B–O bonds. At 1750 °C, the boron concentration decreases to 0.7 atom % and is predominantly incorporated through B–N bonding. Higher temperatures result in complete expulsion of boron from the lattice, leaving behind defects that are found to be beneficial for NO2 gas detection. The gas sensing properties are explored to gain insight into the impact of boron chemistry on the sensing performance. A highly sensitive and selective conductometric NO2 sensor is fabricated on a low-power microheater. Defect-engineered graphene aerogels with no boron remaining have superior gas detection properties. At an optimum sensing temperature of 240 °C, the defect-engineered aerogel has a theoretical detection limit of 7 ppb for NO2 and response and recovery times of 100 and 300 s, respectively, with excellent selectivity over ammonia and hydrogen. Lastly, the superior gas sensing performance of defect-engineered graphene aerogels has remarkable implications for their performance in catalysis and energy storage applications.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b05984</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Journal of physical chemistry. C, 2018-09, Vol.122 (35), p.20358-20365</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1150-891eae718c2f70f317c9fccecc9b7f36d75d9e5250d197d616a7b5011f0a431c3</citedby><cites>FETCH-LOGICAL-c1150-891eae718c2f70f317c9fccecc9b7f36d75d9e5250d197d616a7b5011f0a431c3</cites><orcidid>0000-0003-0618-5133 ; 0000-0002-3482-9226 ; 0000000234829226 ; 0000000306185133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1548340$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turner, Sally</creatorcontrib><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>Long, Hu</creatorcontrib><creatorcontrib>Nelson, Art J.</creatorcontrib><creatorcontrib>Baker, Alex</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Carraro, Carlo</creatorcontrib><creatorcontrib>Worsley, Marcus A.</creatorcontrib><creatorcontrib>Maboudian, Roya</creatorcontrib><creatorcontrib>Zettl, Alex</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection</title><title>Journal of physical chemistry. C</title><description>In this study, boron-doped and defect-engineered graphene aerogels are prepared using triphenyl boron as a boron precursor and subsequent heat treatments. The boron chemistry and concentration in the graphene lattice are found to be highly dependent on the temperature used to activate boron. At 1500 °C, boron is incorporated at 3.2 atom % through a combination of B–C, B–N, and B–O bonds. At 1750 °C, the boron concentration decreases to 0.7 atom % and is predominantly incorporated through B–N bonding. Higher temperatures result in complete expulsion of boron from the lattice, leaving behind defects that are found to be beneficial for NO2 gas detection. The gas sensing properties are explored to gain insight into the impact of boron chemistry on the sensing performance. A highly sensitive and selective conductometric NO2 sensor is fabricated on a low-power microheater. Defect-engineered graphene aerogels with no boron remaining have superior gas detection properties. At an optimum sensing temperature of 240 °C, the defect-engineered aerogel has a theoretical detection limit of 7 ppb for NO2 and response and recovery times of 100 and 300 s, respectively, with excellent selectivity over ammonia and hydrogen. Lastly, the superior gas sensing performance of defect-engineered graphene aerogels has remarkable implications for their performance in catalysis and energy storage applications.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYjePTbeFzvbLd09IiCaELnIxUtTZqdQgi1pNyb-e5dAPM1k8n5MHsYeQYxAlPBsMY_2R8RRvRGqqasrNoBGloWulLr-3yt9y-5y3guhpAA5YF8vMcXAZ_How5bb0PIZOcKOz8PWB6J0OkfHF8kedxSITyjFLR0ydzHx9aFLNlPIvvM_xD9WvOz9Xe_3MdyzG2cPmR4uc8jWr_PP6VuxXC3ep5NlgQBKFHUDZElDjaXTwknQ2DhEQmw22slxq1XbkCqVaKHR7RjGVm-UAHDCVhJQDtnTOTfmzpuMvu_fYQyhf8OAqmpZiV4kziJMMedEzhyT_7bp14AwJ4CmB2hOAM0FoPwDlrhlcQ</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Turner, Sally</creator><creator>Yan, Wenjun</creator><creator>Long, Hu</creator><creator>Nelson, Art J.</creator><creator>Baker, Alex</creator><creator>Lee, Jonathan R. I.</creator><creator>Carraro, Carlo</creator><creator>Worsley, Marcus A.</creator><creator>Maboudian, Roya</creator><creator>Zettl, Alex</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0618-5133</orcidid><orcidid>https://orcid.org/0000-0002-3482-9226</orcidid><orcidid>https://orcid.org/0000000234829226</orcidid><orcidid>https://orcid.org/0000000306185133</orcidid></search><sort><creationdate>20180906</creationdate><title>Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection</title><author>Turner, Sally ; Yan, Wenjun ; Long, Hu ; Nelson, Art J. ; Baker, Alex ; Lee, Jonathan R. I. ; Carraro, Carlo ; Worsley, Marcus A. ; Maboudian, Roya ; Zettl, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1150-891eae718c2f70f317c9fccecc9b7f36d75d9e5250d197d616a7b5011f0a431c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, Sally</creatorcontrib><creatorcontrib>Yan, Wenjun</creatorcontrib><creatorcontrib>Long, Hu</creatorcontrib><creatorcontrib>Nelson, Art J.</creatorcontrib><creatorcontrib>Baker, Alex</creatorcontrib><creatorcontrib>Lee, Jonathan R. I.</creatorcontrib><creatorcontrib>Carraro, Carlo</creatorcontrib><creatorcontrib>Worsley, Marcus A.</creatorcontrib><creatorcontrib>Maboudian, Roya</creatorcontrib><creatorcontrib>Zettl, Alex</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, Sally</au><au>Yan, Wenjun</au><au>Long, Hu</au><au>Nelson, Art J.</au><au>Baker, Alex</au><au>Lee, Jonathan R. I.</au><au>Carraro, Carlo</au><au>Worsley, Marcus A.</au><au>Maboudian, Roya</au><au>Zettl, Alex</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection</atitle><jtitle>Journal of physical chemistry. C</jtitle><date>2018-09-06</date><risdate>2018</risdate><volume>122</volume><issue>35</issue><spage>20358</spage><epage>20365</epage><pages>20358-20365</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In this study, boron-doped and defect-engineered graphene aerogels are prepared using triphenyl boron as a boron precursor and subsequent heat treatments. The boron chemistry and concentration in the graphene lattice are found to be highly dependent on the temperature used to activate boron. At 1500 °C, boron is incorporated at 3.2 atom % through a combination of B–C, B–N, and B–O bonds. At 1750 °C, the boron concentration decreases to 0.7 atom % and is predominantly incorporated through B–N bonding. Higher temperatures result in complete expulsion of boron from the lattice, leaving behind defects that are found to be beneficial for NO2 gas detection. The gas sensing properties are explored to gain insight into the impact of boron chemistry on the sensing performance. A highly sensitive and selective conductometric NO2 sensor is fabricated on a low-power microheater. Defect-engineered graphene aerogels with no boron remaining have superior gas detection properties. At an optimum sensing temperature of 240 °C, the defect-engineered aerogel has a theoretical detection limit of 7 ppb for NO2 and response and recovery times of 100 and 300 s, respectively, with excellent selectivity over ammonia and hydrogen. Lastly, the superior gas sensing performance of defect-engineered graphene aerogels has remarkable implications for their performance in catalysis and energy storage applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b05984</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0618-5133</orcidid><orcidid>https://orcid.org/0000-0002-3482-9226</orcidid><orcidid>https://orcid.org/0000000234829226</orcidid><orcidid>https://orcid.org/0000000306185133</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-09, Vol.122 (35), p.20358-20365
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1548340
source ACS Publications
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Boron Doping and Defect Engineering of Graphene Aerogels for Ultrasensitive NO 2 Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Doping%20and%20Defect%20Engineering%20of%20Graphene%20Aerogels%20for%20Ultrasensitive%20NO%202%20Detection&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Turner,%20Sally&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2018-09-06&rft.volume=122&rft.issue=35&rft.spage=20358&rft.epage=20365&rft.pages=20358-20365&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b05984&rft_dat=%3Ccrossref_osti_%3E10_1021_acs_jpcc_8b05984%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true