Volumetric additive manufacturing via tomographic reconstruction
Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points w...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-03, Vol.363 (6431), p.1075-1079 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1079 |
---|---|
container_issue | 6431 |
container_start_page | 1075 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 363 |
creator | Kelly, Brett E Bhattacharya, Indrasen Heidari, Hossein Shusteff, Maxim Spadaccini, Christopher M Taylor, Hayden K |
description | Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects. |
doi_str_mv | 10.1126/science.aau7114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1547793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179476982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-43887ac992b9f7a622fc0321af482c23510540124ed56b4c176e63174d2c82ac3</originalsourceid><addsrcrecordid>eNpd0TtLBDEQB_Agip6P2k4ObWzWy3OTdMrhCwQbtQ252axGbjdnHoLf3sidFlZT5JdhZv4IHRN8QQhtZwm8G8FdWFskIXwLTQjWotEUs200wZi1jcJS7KH9lN4xrm-a7aI9hiUWRNAJunwJyzK4HD1Mbdf57D_ddLBj6S3kEv34Ov30dprDEF6jXb1VFh2EMeVYIPswHqKd3i6TO9rUA_R8c_00v2seHm_v51cPDQiucsOZUtKC1nShe2lbSnvAjBLbc0WBMkGw4JhQ7jrRLjgQ2bqWEck7CopaYAfodN03pOxN3Ts7eKuDjA6yIYJLqVlF52u0iuGjuJTN4BO45dKOLpRkKJGay1YrWunZP_oeShzrClUpjZWoB61qtlYQQ0rR9WYV_WDjlyHY_CRgNgmYTQL1x8mmb1kMrvvzvydn3yvfgnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189085711</pqid></control><display><type>article</type><title>Volumetric additive manufacturing via tomographic reconstruction</title><source>Science Magazine</source><creator>Kelly, Brett E ; Bhattacharya, Indrasen ; Heidari, Hossein ; Shusteff, Maxim ; Spadaccini, Christopher M ; Taylor, Hayden K</creator><creatorcontrib>Kelly, Brett E ; Bhattacharya, Indrasen ; Heidari, Hossein ; Shusteff, Maxim ; Spadaccini, Christopher M ; Taylor, Hayden K ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau7114</identifier><identifier>PMID: 30705152</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>3-D printers ; Additive manufacturing ; ENGINEERING ; Evolution ; Fabrication ; Gelatin ; Hydrogels ; Layering ; Light ; Manufacturing ; Photopolymers ; Photosensitivity ; Polymers ; Printing ; Rotating matter ; Rotation ; Spatial discrimination ; Spatial resolution ; Surface properties ; Three dimensional printing ; Viscosity</subject><ispartof>Science (American Association for the Advancement of Science), 2019-03, Vol.363 (6431), p.1075-1079</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-43887ac992b9f7a622fc0321af482c23510540124ed56b4c176e63174d2c82ac3</citedby><cites>FETCH-LOGICAL-c548t-43887ac992b9f7a622fc0321af482c23510540124ed56b4c176e63174d2c82ac3</cites><orcidid>0000-0002-7074-1459 ; 0000-0002-1864-8169 ; 0000-0001-7000-1963 ; 0000-0001-9810-6505 ; 0000-0003-0973-2614 ; 0000-0002-4274-2817 ; 0000000218648169 ; 0000000242742817 ; 0000000170001963 ; 0000000270741459 ; 0000000198106505 ; 0000000309732614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,2886,2887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30705152$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1547793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Brett E</creatorcontrib><creatorcontrib>Bhattacharya, Indrasen</creatorcontrib><creatorcontrib>Heidari, Hossein</creatorcontrib><creatorcontrib>Shusteff, Maxim</creatorcontrib><creatorcontrib>Spadaccini, Christopher M</creatorcontrib><creatorcontrib>Taylor, Hayden K</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Volumetric additive manufacturing via tomographic reconstruction</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>ENGINEERING</subject><subject>Evolution</subject><subject>Fabrication</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Layering</subject><subject>Light</subject><subject>Manufacturing</subject><subject>Photopolymers</subject><subject>Photosensitivity</subject><subject>Polymers</subject><subject>Printing</subject><subject>Rotating matter</subject><subject>Rotation</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Surface properties</subject><subject>Three dimensional printing</subject><subject>Viscosity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0TtLBDEQB_Agip6P2k4ObWzWy3OTdMrhCwQbtQ252axGbjdnHoLf3sidFlZT5JdhZv4IHRN8QQhtZwm8G8FdWFskIXwLTQjWotEUs200wZi1jcJS7KH9lN4xrm-a7aI9hiUWRNAJunwJyzK4HD1Mbdf57D_ddLBj6S3kEv34Ov30dprDEF6jXb1VFh2EMeVYIPswHqKd3i6TO9rUA_R8c_00v2seHm_v51cPDQiucsOZUtKC1nShe2lbSnvAjBLbc0WBMkGw4JhQ7jrRLjgQ2bqWEck7CopaYAfodN03pOxN3Ts7eKuDjA6yIYJLqVlF52u0iuGjuJTN4BO45dKOLpRkKJGay1YrWunZP_oeShzrClUpjZWoB61qtlYQQ0rR9WYV_WDjlyHY_CRgNgmYTQL1x8mmb1kMrvvzvydn3yvfgnw</recordid><startdate>20190308</startdate><enddate>20190308</enddate><creator>Kelly, Brett E</creator><creator>Bhattacharya, Indrasen</creator><creator>Heidari, Hossein</creator><creator>Shusteff, Maxim</creator><creator>Spadaccini, Christopher M</creator><creator>Taylor, Hayden K</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7074-1459</orcidid><orcidid>https://orcid.org/0000-0002-1864-8169</orcidid><orcidid>https://orcid.org/0000-0001-7000-1963</orcidid><orcidid>https://orcid.org/0000-0001-9810-6505</orcidid><orcidid>https://orcid.org/0000-0003-0973-2614</orcidid><orcidid>https://orcid.org/0000-0002-4274-2817</orcidid><orcidid>https://orcid.org/0000000218648169</orcidid><orcidid>https://orcid.org/0000000242742817</orcidid><orcidid>https://orcid.org/0000000170001963</orcidid><orcidid>https://orcid.org/0000000270741459</orcidid><orcidid>https://orcid.org/0000000198106505</orcidid><orcidid>https://orcid.org/0000000309732614</orcidid></search><sort><creationdate>20190308</creationdate><title>Volumetric additive manufacturing via tomographic reconstruction</title><author>Kelly, Brett E ; Bhattacharya, Indrasen ; Heidari, Hossein ; Shusteff, Maxim ; Spadaccini, Christopher M ; Taylor, Hayden K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-43887ac992b9f7a622fc0321af482c23510540124ed56b4c176e63174d2c82ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>ENGINEERING</topic><topic>Evolution</topic><topic>Fabrication</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Layering</topic><topic>Light</topic><topic>Manufacturing</topic><topic>Photopolymers</topic><topic>Photosensitivity</topic><topic>Polymers</topic><topic>Printing</topic><topic>Rotating matter</topic><topic>Rotation</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Surface properties</topic><topic>Three dimensional printing</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Brett E</creatorcontrib><creatorcontrib>Bhattacharya, Indrasen</creatorcontrib><creatorcontrib>Heidari, Hossein</creatorcontrib><creatorcontrib>Shusteff, Maxim</creatorcontrib><creatorcontrib>Spadaccini, Christopher M</creatorcontrib><creatorcontrib>Taylor, Hayden K</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Brett E</au><au>Bhattacharya, Indrasen</au><au>Heidari, Hossein</au><au>Shusteff, Maxim</au><au>Spadaccini, Christopher M</au><au>Taylor, Hayden K</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volumetric additive manufacturing via tomographic reconstruction</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-03-08</date><risdate>2019</risdate><volume>363</volume><issue>6431</issue><spage>1075</spage><epage>1079</epage><pages>1075-1079</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Additive manufacturing promises enormous geometrical freedom and the potential to combine materials for complex functions. The speed, geometry, and surface quality limitations of additive processes are linked to their reliance on material layering. We demonstrated concurrent printing of all points within a three-dimensional object by illuminating a rotating volume of photosensitive material with a dynamically evolving light pattern. We printed features as small as 0.3 millimeters in engineering acrylate polymers and printed soft structures with exceptionally smooth surfaces into a gelatin methacrylate hydrogel. Our process enables us to construct components that encase other preexisting solid objects, allowing for multimaterial fabrication. We developed models to describe speed and spatial resolution capabilities and demonstrated printing times of 30 to 120 seconds for diverse centimeter-scale objects.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30705152</pmid><doi>10.1126/science.aau7114</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7074-1459</orcidid><orcidid>https://orcid.org/0000-0002-1864-8169</orcidid><orcidid>https://orcid.org/0000-0001-7000-1963</orcidid><orcidid>https://orcid.org/0000-0001-9810-6505</orcidid><orcidid>https://orcid.org/0000-0003-0973-2614</orcidid><orcidid>https://orcid.org/0000-0002-4274-2817</orcidid><orcidid>https://orcid.org/0000000218648169</orcidid><orcidid>https://orcid.org/0000000242742817</orcidid><orcidid>https://orcid.org/0000000170001963</orcidid><orcidid>https://orcid.org/0000000270741459</orcidid><orcidid>https://orcid.org/0000000198106505</orcidid><orcidid>https://orcid.org/0000000309732614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-03, Vol.363 (6431), p.1075-1079 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1547793 |
source | Science Magazine |
subjects | 3-D printers Additive manufacturing ENGINEERING Evolution Fabrication Gelatin Hydrogels Layering Light Manufacturing Photopolymers Photosensitivity Polymers Printing Rotating matter Rotation Spatial discrimination Spatial resolution Surface properties Three dimensional printing Viscosity |
title | Volumetric additive manufacturing via tomographic reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volumetric%20additive%20manufacturing%20via%20tomographic%20reconstruction&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kelly,%20Brett%20E&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-03-08&rft.volume=363&rft.issue=6431&rft.spage=1075&rft.epage=1079&rft.pages=1075-1079&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau7114&rft_dat=%3Cproquest_osti_%3E2179476982%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189085711&rft_id=info:pmid/30705152&rfr_iscdi=true |