Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2

The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electrofo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2019-07, Vol.3 (7)
Hauptverfasser: Wahila, Matthew J., Paez, Galo, Singh, Christopher N., Regoutz, Anna, Sallis, Shawn, Zuba, Mateusz J., Rana, Jatinkumar, Tellekamp, M. Brooks, Boschker, Jos E., Markurt, Toni, Swallow, Jack E. N., Jones, Leanne A. H., Veal, Tim D., Yang, Wanli, Lee, Tien-Lin, Rodolakis, Fanny, Sadowski, Jerzy T., Prendergast, David, Lee, Wei-Cheng, Doolittle, W. Alan, Piper, Louis F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physical review materials
container_volume 3
creator Wahila, Matthew J.
Paez, Galo
Singh, Christopher N.
Regoutz, Anna
Sallis, Shawn
Zuba, Mateusz J.
Rana, Jatinkumar
Tellekamp, M. Brooks
Boschker, Jos E.
Markurt, Toni
Swallow, Jack E. N.
Jones, Leanne A. H.
Veal, Tim D.
Yang, Wanli
Lee, Tien-Lin
Rodolakis, Fanny
Sadowski, Jerzy T.
Prendergast, David
Lee, Wei-Cheng
Doolittle, W. Alan
Piper, Louis F. J.
description The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at ~810°C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap.
doi_str_mv 10.1103/PhysRevMaterials.3.074602
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1547289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547289</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-10cada972e5b09a382b3839a26b9c7456b59c807d7681ff29d7e5aa066b6787a3</originalsourceid><addsrcrecordid>eNotj8tKAzEYRrNQsNS-Q3SfMZfJbSmlXqDaIgruSib5h0bGBJI40Le3oKtvceBwPoRuGO0Yo-JufzzVN5hfXIMS3VQ70VHdK8ov0IL3WhJrpbhCq1q_KKXMSMa1XaDPzRwDJA84j9jhCj6nQHIJUPAeIpSpklDiDAl_Q3MTian-TK7lgltxqcYWc8IxYV9O9cynmAC_Djt-jS7Hcwas_neJPh427-snst09Pq_vtyQzwxth1LvgrOYgB2qdMHwQRljH1WC97qUapPWG6qCVYePIbdAgnaNKDUob7cQS3f55c23xUH1s4I_nEwl8OzDZa26s-AVD3FeR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2</title><source>American Physical Society Journals</source><creator>Wahila, Matthew J. ; Paez, Galo ; Singh, Christopher N. ; Regoutz, Anna ; Sallis, Shawn ; Zuba, Mateusz J. ; Rana, Jatinkumar ; Tellekamp, M. Brooks ; Boschker, Jos E. ; Markurt, Toni ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Veal, Tim D. ; Yang, Wanli ; Lee, Tien-Lin ; Rodolakis, Fanny ; Sadowski, Jerzy T. ; Prendergast, David ; Lee, Wei-Cheng ; Doolittle, W. Alan ; Piper, Louis F. J.</creator><creatorcontrib>Wahila, Matthew J. ; Paez, Galo ; Singh, Christopher N. ; Regoutz, Anna ; Sallis, Shawn ; Zuba, Mateusz J. ; Rana, Jatinkumar ; Tellekamp, M. Brooks ; Boschker, Jos E. ; Markurt, Toni ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Veal, Tim D. ; Yang, Wanli ; Lee, Tien-Lin ; Rodolakis, Fanny ; Sadowski, Jerzy T. ; Prendergast, David ; Lee, Wei-Cheng ; Doolittle, W. Alan ; Piper, Louis F. J. ; Brookhaven National Lab. (BNL), Upton, NY (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at ~810°C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap.</description><identifier>ISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.3.074602</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Physical review materials, 2019-07, Vol.3 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1547289$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahila, Matthew J.</creatorcontrib><creatorcontrib>Paez, Galo</creatorcontrib><creatorcontrib>Singh, Christopher N.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Sallis, Shawn</creatorcontrib><creatorcontrib>Zuba, Mateusz J.</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Tellekamp, M. Brooks</creatorcontrib><creatorcontrib>Boschker, Jos E.</creatorcontrib><creatorcontrib>Markurt, Toni</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Rodolakis, Fanny</creatorcontrib><creatorcontrib>Sadowski, Jerzy T.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Lee, Wei-Cheng</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2</title><title>Physical review materials</title><description>The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at ~810°C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj8tKAzEYRrNQsNS-Q3SfMZfJbSmlXqDaIgruSib5h0bGBJI40Le3oKtvceBwPoRuGO0Yo-JufzzVN5hfXIMS3VQ70VHdK8ov0IL3WhJrpbhCq1q_KKXMSMa1XaDPzRwDJA84j9jhCj6nQHIJUPAeIpSpklDiDAl_Q3MTian-TK7lgltxqcYWc8IxYV9O9cynmAC_Djt-jS7Hcwas_neJPh427-snst09Pq_vtyQzwxth1LvgrOYgB2qdMHwQRljH1WC97qUapPWG6qCVYePIbdAgnaNKDUob7cQS3f55c23xUH1s4I_nEwl8OzDZa26s-AVD3FeR</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>Wahila, Matthew J.</creator><creator>Paez, Galo</creator><creator>Singh, Christopher N.</creator><creator>Regoutz, Anna</creator><creator>Sallis, Shawn</creator><creator>Zuba, Mateusz J.</creator><creator>Rana, Jatinkumar</creator><creator>Tellekamp, M. Brooks</creator><creator>Boschker, Jos E.</creator><creator>Markurt, Toni</creator><creator>Swallow, Jack E. N.</creator><creator>Jones, Leanne A. H.</creator><creator>Veal, Tim D.</creator><creator>Yang, Wanli</creator><creator>Lee, Tien-Lin</creator><creator>Rodolakis, Fanny</creator><creator>Sadowski, Jerzy T.</creator><creator>Prendergast, David</creator><creator>Lee, Wei-Cheng</creator><creator>Doolittle, W. Alan</creator><creator>Piper, Louis F. J.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190716</creationdate><title>Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2</title><author>Wahila, Matthew J. ; Paez, Galo ; Singh, Christopher N. ; Regoutz, Anna ; Sallis, Shawn ; Zuba, Mateusz J. ; Rana, Jatinkumar ; Tellekamp, M. Brooks ; Boschker, Jos E. ; Markurt, Toni ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Veal, Tim D. ; Yang, Wanli ; Lee, Tien-Lin ; Rodolakis, Fanny ; Sadowski, Jerzy T. ; Prendergast, David ; Lee, Wei-Cheng ; Doolittle, W. Alan ; Piper, Louis F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-10cada972e5b09a382b3839a26b9c7456b59c807d7681ff29d7e5aa066b6787a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahila, Matthew J.</creatorcontrib><creatorcontrib>Paez, Galo</creatorcontrib><creatorcontrib>Singh, Christopher N.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Sallis, Shawn</creatorcontrib><creatorcontrib>Zuba, Mateusz J.</creatorcontrib><creatorcontrib>Rana, Jatinkumar</creatorcontrib><creatorcontrib>Tellekamp, M. Brooks</creatorcontrib><creatorcontrib>Boschker, Jos E.</creatorcontrib><creatorcontrib>Markurt, Toni</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Lee, Tien-Lin</creatorcontrib><creatorcontrib>Rodolakis, Fanny</creatorcontrib><creatorcontrib>Sadowski, Jerzy T.</creatorcontrib><creatorcontrib>Prendergast, David</creatorcontrib><creatorcontrib>Lee, Wei-Cheng</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><creatorcontrib>Piper, Louis F. J.</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahila, Matthew J.</au><au>Paez, Galo</au><au>Singh, Christopher N.</au><au>Regoutz, Anna</au><au>Sallis, Shawn</au><au>Zuba, Mateusz J.</au><au>Rana, Jatinkumar</au><au>Tellekamp, M. Brooks</au><au>Boschker, Jos E.</au><au>Markurt, Toni</au><au>Swallow, Jack E. N.</au><au>Jones, Leanne A. H.</au><au>Veal, Tim D.</au><au>Yang, Wanli</au><au>Lee, Tien-Lin</au><au>Rodolakis, Fanny</au><au>Sadowski, Jerzy T.</au><au>Prendergast, David</au><au>Lee, Wei-Cheng</au><au>Doolittle, W. Alan</au><au>Piper, Louis F. J.</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2</atitle><jtitle>Physical review materials</jtitle><date>2019-07-16</date><risdate>2019</risdate><volume>3</volume><issue>7</issue><issn>2475-9953</issn><abstract>The metal-insulator transition of NbO2 is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed NbOx that may be inherently different to crystalline NbO2. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial NbO2 thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at ~810°C. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline NbO2 as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.3.074602</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2019-07, Vol.3 (7)
issn 2475-9953
language eng
recordid cdi_osti_scitechconnect_1547289
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
title Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20of%20a%20second-order%20Peierls-driven%20metal-insulator%20transition%20in%20crystalline%20NbO2&rft.jtitle=Physical%20review%20materials&rft.au=Wahila,%20Matthew%20J.&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2019-07-16&rft.volume=3&rft.issue=7&rft.issn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.3.074602&rft_dat=%3Costi%3E1547289%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true