Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry

[Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in polymer science 2019-08, Vol.95 (C), p.1-31
Hauptverfasser: Wang, Weiyu, Lu, Wei, Goodwin, Andrew, Wang, Huiqun, Yin, Panchao, Kang, Nam-Goo, Hong, Kunlun, Mays, Jimmy W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue C
container_start_page 1
container_title Progress in polymer science
container_volume 95
creator Wang, Weiyu
Lu, Wei
Goodwin, Andrew
Wang, Huiqun
Yin, Panchao
Kang, Nam-Goo
Hong, Kunlun
Mays, Jimmy W.
description [Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.
doi_str_mv 10.1016/j.progpolymsci.2019.04.002
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079670018303502</els_id><sourcerecordid>S0079670018303502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH6zeE9ZJ7DS9ofKUipAQnC3Hj9ZVEkd2Wqkc-eU4FAmOnPawszM7H0IzAikBwq63ae_dunfNoQ3SphmQKoUiBchO0ITMyzwhjFSnaAJQVgkrAc7RRQhbAFISWk7Q56uWuhuwUHvRSR2w7fCw0b51fSPCYCXW43St9gEb71rc2L3t1vg7U3v7IQbrurDAz0LGtWu03DXCY-Hlxg5aDjsfXUWncNj1XvwK5Ea3Ngz-cInOjGiCvvqZU_R-f_e2fExWLw9Py5tVImlWDgljis2LytC8VEaxnEmR09oQk1e0qouMMlDZHEDkJKsyEetRmhtdmbqeM5WRfIpmR18Xe_GIK363ka7r4pOc0ILRAqJocRTFMiF4bXjvbSv8gRPgI3K-5X-R8xE5h4JH5PH49nisY4291X5M0RGrsn4MUc7-x-YLrkOWAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W.</creator><creatorcontrib>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>[Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</description><identifier>ISSN: 0079-6700</identifier><identifier>EISSN: 1873-1619</identifier><identifier>DOI: 10.1016/j.progpolymsci.2019.04.002</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Glass transition temperature ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Living/controlled polymerization ; Macromolecular architecture ; MATERIALS SCIENCE ; Mechanical properties ; Supramolecular chemistry ; Thermoplastic elastomer</subject><ispartof>Progress in polymer science, 2019-08, Vol.95 (C), p.1-31</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</citedby><cites>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</cites><orcidid>0000-0001-7460-098X ; 000000017460098X ; 0000000229141638 ; 0000000228525111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079670018303502$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1546540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Weiyu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Goodwin, Andrew</creatorcontrib><creatorcontrib>Wang, Huiqun</creatorcontrib><creatorcontrib>Yin, Panchao</creatorcontrib><creatorcontrib>Kang, Nam-Goo</creatorcontrib><creatorcontrib>Hong, Kunlun</creatorcontrib><creatorcontrib>Mays, Jimmy W.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><title>Progress in polymer science</title><description>[Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</description><subject>Glass transition temperature</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Living/controlled polymerization</subject><subject>Macromolecular architecture</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Supramolecular chemistry</subject><subject>Thermoplastic elastomer</subject><issn>0079-6700</issn><issn>1873-1619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH6zeE9ZJ7DS9ofKUipAQnC3Hj9ZVEkd2Wqkc-eU4FAmOnPawszM7H0IzAikBwq63ae_dunfNoQ3SphmQKoUiBchO0ITMyzwhjFSnaAJQVgkrAc7RRQhbAFISWk7Q56uWuhuwUHvRSR2w7fCw0b51fSPCYCXW43St9gEb71rc2L3t1vg7U3v7IQbrurDAz0LGtWu03DXCY-Hlxg5aDjsfXUWncNj1XvwK5Ea3Ngz-cInOjGiCvvqZU_R-f_e2fExWLw9Py5tVImlWDgljis2LytC8VEaxnEmR09oQk1e0qouMMlDZHEDkJKsyEetRmhtdmbqeM5WRfIpmR18Xe_GIK363ka7r4pOc0ILRAqJocRTFMiF4bXjvbSv8gRPgI3K-5X-R8xE5h4JH5PH49nisY4291X5M0RGrsn4MUc7-x-YLrkOWAQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Wang, Weiyu</creator><creator>Lu, Wei</creator><creator>Goodwin, Andrew</creator><creator>Wang, Huiqun</creator><creator>Yin, Panchao</creator><creator>Kang, Nam-Goo</creator><creator>Hong, Kunlun</creator><creator>Mays, Jimmy W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7460-098X</orcidid><orcidid>https://orcid.org/000000017460098X</orcidid><orcidid>https://orcid.org/0000000229141638</orcidid><orcidid>https://orcid.org/0000000228525111</orcidid></search><sort><creationdate>20190801</creationdate><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><author>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Glass transition temperature</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Living/controlled polymerization</topic><topic>Macromolecular architecture</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Supramolecular chemistry</topic><topic>Thermoplastic elastomer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weiyu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Goodwin, Andrew</creatorcontrib><creatorcontrib>Wang, Huiqun</creatorcontrib><creatorcontrib>Yin, Panchao</creatorcontrib><creatorcontrib>Kang, Nam-Goo</creatorcontrib><creatorcontrib>Hong, Kunlun</creatorcontrib><creatorcontrib>Mays, Jimmy W.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Progress in polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weiyu</au><au>Lu, Wei</au><au>Goodwin, Andrew</au><au>Wang, Huiqun</au><au>Yin, Panchao</au><au>Kang, Nam-Goo</au><au>Hong, Kunlun</au><au>Mays, Jimmy W.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</atitle><jtitle>Progress in polymer science</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>95</volume><issue>C</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0079-6700</issn><eissn>1873-1619</eissn><abstract>[Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.progpolymsci.2019.04.002</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7460-098X</orcidid><orcidid>https://orcid.org/000000017460098X</orcidid><orcidid>https://orcid.org/0000000229141638</orcidid><orcidid>https://orcid.org/0000000228525111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6700
ispartof Progress in polymer science, 2019-08, Vol.95 (C), p.1-31
issn 0079-6700
1873-1619
language eng
recordid cdi_osti_scitechconnect_1546540
source Elsevier ScienceDirect Journals
subjects Glass transition temperature
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Living/controlled polymerization
Macromolecular architecture
MATERIALS SCIENCE
Mechanical properties
Supramolecular chemistry
Thermoplastic elastomer
title Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20thermoplastic%20elastomers%20from%20living%20polymerizations:%20Macromolecular%20architectures%20and%20supramolecular%20chemistry&rft.jtitle=Progress%20in%20polymer%20science&rft.au=Wang,%20Weiyu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-08-01&rft.volume=95&rft.issue=C&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0079-6700&rft.eissn=1873-1619&rft_id=info:doi/10.1016/j.progpolymsci.2019.04.002&rft_dat=%3Celsevier_osti_%3ES0079670018303502%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0079670018303502&rfr_iscdi=true