Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry
[Display omitted] Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuo...
Gespeichert in:
Veröffentlicht in: | Progress in polymer science 2019-08, Vol.95 (C), p.1-31 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | C |
container_start_page | 1 |
container_title | Progress in polymer science |
container_volume | 95 |
creator | Wang, Weiyu Lu, Wei Goodwin, Andrew Wang, Huiqun Yin, Panchao Kang, Nam-Goo Hong, Kunlun Mays, Jimmy W. |
description | [Display omitted]
Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives. |
doi_str_mv | 10.1016/j.progpolymsci.2019.04.002 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079670018303502</els_id><sourcerecordid>S0079670018303502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH6zeE9ZJ7DS9ofKUipAQnC3Hj9ZVEkd2Wqkc-eU4FAmOnPawszM7H0IzAikBwq63ae_dunfNoQ3SphmQKoUiBchO0ITMyzwhjFSnaAJQVgkrAc7RRQhbAFISWk7Q56uWuhuwUHvRSR2w7fCw0b51fSPCYCXW43St9gEb71rc2L3t1vg7U3v7IQbrurDAz0LGtWu03DXCY-Hlxg5aDjsfXUWncNj1XvwK5Ea3Ngz-cInOjGiCvvqZU_R-f_e2fExWLw9Py5tVImlWDgljis2LytC8VEaxnEmR09oQk1e0qouMMlDZHEDkJKsyEetRmhtdmbqeM5WRfIpmR18Xe_GIK363ka7r4pOc0ILRAqJocRTFMiF4bXjvbSv8gRPgI3K-5X-R8xE5h4JH5PH49nisY4291X5M0RGrsn4MUc7-x-YLrkOWAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W.</creator><creatorcontrib>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>[Display omitted]
Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</description><identifier>ISSN: 0079-6700</identifier><identifier>EISSN: 1873-1619</identifier><identifier>DOI: 10.1016/j.progpolymsci.2019.04.002</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Glass transition temperature ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Living/controlled polymerization ; Macromolecular architecture ; MATERIALS SCIENCE ; Mechanical properties ; Supramolecular chemistry ; Thermoplastic elastomer</subject><ispartof>Progress in polymer science, 2019-08, Vol.95 (C), p.1-31</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</citedby><cites>FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</cites><orcidid>0000-0001-7460-098X ; 000000017460098X ; 0000000229141638 ; 0000000228525111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079670018303502$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1546540$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Weiyu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Goodwin, Andrew</creatorcontrib><creatorcontrib>Wang, Huiqun</creatorcontrib><creatorcontrib>Yin, Panchao</creatorcontrib><creatorcontrib>Kang, Nam-Goo</creatorcontrib><creatorcontrib>Hong, Kunlun</creatorcontrib><creatorcontrib>Mays, Jimmy W.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><title>Progress in polymer science</title><description>[Display omitted]
Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</description><subject>Glass transition temperature</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Living/controlled polymerization</subject><subject>Macromolecular architecture</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Supramolecular chemistry</subject><subject>Thermoplastic elastomer</subject><issn>0079-6700</issn><issn>1873-1619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH6zeE9ZJ7DS9ofKUipAQnC3Hj9ZVEkd2Wqkc-eU4FAmOnPawszM7H0IzAikBwq63ae_dunfNoQ3SphmQKoUiBchO0ITMyzwhjFSnaAJQVgkrAc7RRQhbAFISWk7Q56uWuhuwUHvRSR2w7fCw0b51fSPCYCXW43St9gEb71rc2L3t1vg7U3v7IQbrurDAz0LGtWu03DXCY-Hlxg5aDjsfXUWncNj1XvwK5Ea3Ngz-cInOjGiCvvqZU_R-f_e2fExWLw9Py5tVImlWDgljis2LytC8VEaxnEmR09oQk1e0qouMMlDZHEDkJKsyEetRmhtdmbqeM5WRfIpmR18Xe_GIK363ka7r4pOc0ILRAqJocRTFMiF4bXjvbSv8gRPgI3K-5X-R8xE5h4JH5PH49nisY4291X5M0RGrsn4MUc7-x-YLrkOWAQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Wang, Weiyu</creator><creator>Lu, Wei</creator><creator>Goodwin, Andrew</creator><creator>Wang, Huiqun</creator><creator>Yin, Panchao</creator><creator>Kang, Nam-Goo</creator><creator>Hong, Kunlun</creator><creator>Mays, Jimmy W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7460-098X</orcidid><orcidid>https://orcid.org/000000017460098X</orcidid><orcidid>https://orcid.org/0000000229141638</orcidid><orcidid>https://orcid.org/0000000228525111</orcidid></search><sort><creationdate>20190801</creationdate><title>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</title><author>Wang, Weiyu ; Lu, Wei ; Goodwin, Andrew ; Wang, Huiqun ; Yin, Panchao ; Kang, Nam-Goo ; Hong, Kunlun ; Mays, Jimmy W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-66d6849f537dfd636ca35bf1f3959b42560d2800a31292a715553fe9fbb86d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Glass transition temperature</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Living/controlled polymerization</topic><topic>Macromolecular architecture</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Supramolecular chemistry</topic><topic>Thermoplastic elastomer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Weiyu</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Goodwin, Andrew</creatorcontrib><creatorcontrib>Wang, Huiqun</creatorcontrib><creatorcontrib>Yin, Panchao</creatorcontrib><creatorcontrib>Kang, Nam-Goo</creatorcontrib><creatorcontrib>Hong, Kunlun</creatorcontrib><creatorcontrib>Mays, Jimmy W.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Progress in polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Weiyu</au><au>Lu, Wei</au><au>Goodwin, Andrew</au><au>Wang, Huiqun</au><au>Yin, Panchao</au><au>Kang, Nam-Goo</au><au>Hong, Kunlun</au><au>Mays, Jimmy W.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry</atitle><jtitle>Progress in polymer science</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>95</volume><issue>C</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0079-6700</issn><eissn>1873-1619</eissn><abstract>[Display omitted]
Thermoplastic elastomers (TPEs) have found use in a wide range of applications, such as adhesives, elastomers, coatings, fibers, and in additive manufacturing techniques such as 3D printing. Despite their omnipresence, the need for advanced TPEs with adaptive properties is continuously growing. Along with a brief historical introduction, this review presents an overview of typical structure-property relationships for various TPEs and discusses the design principles of TPEs from a synthetic chemistry perspective. Recent advances in TPEs with different macromolecular architectures, including linear ABA triblock copolymers, ABC triblock terpolymers, multiblock copolymers, star copolymers, graft copolymers, bottlebrush polymers, and hyperbranched polymers are reviewed. Service temperatures and mechanical properties of the different materials are compared in each section. Incorporating various supramolecular interactions into different macromolecular architectures as a means to further extend the range of TPE applications is also discussed. Future opportunities for TPE research in both academia and industry are addressed as perspectives.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.progpolymsci.2019.04.002</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-7460-098X</orcidid><orcidid>https://orcid.org/000000017460098X</orcidid><orcidid>https://orcid.org/0000000229141638</orcidid><orcidid>https://orcid.org/0000000228525111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6700 |
ispartof | Progress in polymer science, 2019-08, Vol.95 (C), p.1-31 |
issn | 0079-6700 1873-1619 |
language | eng |
recordid | cdi_osti_scitechconnect_1546540 |
source | Elsevier ScienceDirect Journals |
subjects | Glass transition temperature INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Living/controlled polymerization Macromolecular architecture MATERIALS SCIENCE Mechanical properties Supramolecular chemistry Thermoplastic elastomer |
title | Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20thermoplastic%20elastomers%20from%20living%20polymerizations:%20Macromolecular%20architectures%20and%20supramolecular%20chemistry&rft.jtitle=Progress%20in%20polymer%20science&rft.au=Wang,%20Weiyu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-08-01&rft.volume=95&rft.issue=C&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0079-6700&rft.eissn=1873-1619&rft_id=info:doi/10.1016/j.progpolymsci.2019.04.002&rft_dat=%3Celsevier_osti_%3ES0079670018303502%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0079670018303502&rfr_iscdi=true |