Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning
The distribution of relaxation times (DRT) has drawn increasing attention for interpreting electrochemical impedance spectroscopy (EIS). Deconvolution of DRT from EIS is a challenging ill-posed problem that requires regularization methods. In this work, we formulate DRT reconstruction task as a stat...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-08, Vol.313 (C), p.570-583 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | C |
container_start_page | 570 |
container_title | Electrochimica acta |
container_volume | 313 |
creator | Li, Xin Ahmadi, Mahshid Collins, Liam Kalinin, Sergei V. |
description | The distribution of relaxation times (DRT) has drawn increasing attention for interpreting electrochemical impedance spectroscopy (EIS). Deconvolution of DRT from EIS is a challenging ill-posed problem that requires regularization methods. In this work, we formulate DRT reconstruction task as a statistical model selection problem with structural-sparsity penalties. We utilize the Elastic net regularization that simultaneously benefits from Ridge and Lasso regularizations with optimal tuning parameter automatically determined by the information criteria. We benchmark our approach on four synthetic experiments (a ZARC element, ZARC mixtures, a RC circuit and a Fractal element) and two real EIS datasets of a Lithium ion battery and an organic-inorganic halide class of perovskites in oxygen environment at different gas pressures. We demonstrate the superiority of proposed model selection procedure, that is capable of eliminating pseudo peaks and representing asymmetries in DRT as well as precisely estimating resistances. We highlight our approach is robust to reducing and subsampling EIS frequency range, making it a promising tool for timing-resolved, localized and large scale EIS data analysis. For the Lithium ion battery data analysis, we extend the classical DRT model to incorporate the inductive effect and illustrate DRT as a guidance for equivalent circuit modeling to refine impedance reconstruction at low risks of overfitting. Furthermore, the structural-sparsity regularization could be extended for multidimensional and Bayesian EIS data analysis. |
doi_str_mv | 10.1016/j.electacta.2019.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619309119</els_id><sourcerecordid>2252273729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-40214a7f7458ff0423c1e603b58934ad839cb33e020a3337f82678eec78c7ac63</originalsourceid><addsrcrecordid>eNqFkd2K1TAUhYsoeBx9BoPe2pqftmm9G8bxBwa80euQk-zO5NAmNUkPc3xf38PdVrwVAiHJ2mt_O6soXjNaMcra96cKRjBZ46o4ZX1Fm4oy-qQ4sE6KUnRN_7Q4UMpEWbdd-7x4kdKJUipbSQ_F749ggj-H8ez8PbEu5eiOS3bBkzCQCKN-1NspuwnSO7xJqNHeQCLaW-K8Xcx2JkMME9lYYjAPMDmjR-KmGez2nObtJZkwX8jZaYI2Gb022RQsjCRt1djtA7l9nMfg8gqFSNhiiXos06xjcvmCGPfLqKP7tcOtJFZnXdrozuAJyvQEGSLJi0ePl8WzQY8JXv3dr4ofn26_33wp7759_npzfVeahvNc1pSzWstB1k03DLTmwjBoqTg2XS9qbTvRm6MQQDnVQgg5dLyVHYCRnZHatOKqeLP7BpxLJeMymAf8X49jKdbULbZB0dtdNMfwc4GU1Sks0SOX4hwFUkjeo0ruKoN_liIMao5u0vGiGFVr8Oqk_gWv1uAVbRQGj5XXeyXgpGcHcQUBjMC6uHLY4P7r8QcOTcNZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252273729</pqid></control><display><type>article</type><title>Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Xin ; Ahmadi, Mahshid ; Collins, Liam ; Kalinin, Sergei V.</creator><creatorcontrib>Li, Xin ; Ahmadi, Mahshid ; Collins, Liam ; Kalinin, Sergei V. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The distribution of relaxation times (DRT) has drawn increasing attention for interpreting electrochemical impedance spectroscopy (EIS). Deconvolution of DRT from EIS is a challenging ill-posed problem that requires regularization methods. In this work, we formulate DRT reconstruction task as a statistical model selection problem with structural-sparsity penalties. We utilize the Elastic net regularization that simultaneously benefits from Ridge and Lasso regularizations with optimal tuning parameter automatically determined by the information criteria. We benchmark our approach on four synthetic experiments (a ZARC element, ZARC mixtures, a RC circuit and a Fractal element) and two real EIS datasets of a Lithium ion battery and an organic-inorganic halide class of perovskites in oxygen environment at different gas pressures. We demonstrate the superiority of proposed model selection procedure, that is capable of eliminating pseudo peaks and representing asymmetries in DRT as well as precisely estimating resistances. We highlight our approach is robust to reducing and subsampling EIS frequency range, making it a promising tool for timing-resolved, localized and large scale EIS data analysis. For the Lithium ion battery data analysis, we extend the classical DRT model to incorporate the inductive effect and illustrate DRT as a guidance for equivalent circuit modeling to refine impedance reconstruction at low risks of overfitting. Furthermore, the structural-sparsity regularization could be extended for multidimensional and Bayesian EIS data analysis.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.05.010</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bayesian analysis ; Data analysis ; Distribution of relaxation times ; Elastic net regularization ; Electrochemical impedance spectroscopy ; Equivalent circuits ; Frequency ranges ; Halide perovskites ; Ill posed problems ; Inductance ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lithium ; Lithium-ion batteries ; Parameters ; Perovskites ; RC circuits ; Rechargeable batteries ; Reconstruction ; Regularization ; Regularization methods ; Sparsity ; Spectrum analysis ; Statistical model selection ; Statistical models ; Tuning</subject><ispartof>Electrochimica acta, 2019-08, Vol.313 (C), p.570-583</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-40214a7f7458ff0423c1e603b58934ad839cb33e020a3337f82678eec78c7ac63</citedby><cites>FETCH-LOGICAL-c522t-40214a7f7458ff0423c1e603b58934ad839cb33e020a3337f82678eec78c7ac63</cites><orcidid>0000000153546152 ; 0000000349469195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468619309119$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1546522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Ahmadi, Mahshid</creatorcontrib><creatorcontrib>Collins, Liam</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning</title><title>Electrochimica acta</title><description>The distribution of relaxation times (DRT) has drawn increasing attention for interpreting electrochemical impedance spectroscopy (EIS). Deconvolution of DRT from EIS is a challenging ill-posed problem that requires regularization methods. In this work, we formulate DRT reconstruction task as a statistical model selection problem with structural-sparsity penalties. We utilize the Elastic net regularization that simultaneously benefits from Ridge and Lasso regularizations with optimal tuning parameter automatically determined by the information criteria. We benchmark our approach on four synthetic experiments (a ZARC element, ZARC mixtures, a RC circuit and a Fractal element) and two real EIS datasets of a Lithium ion battery and an organic-inorganic halide class of perovskites in oxygen environment at different gas pressures. We demonstrate the superiority of proposed model selection procedure, that is capable of eliminating pseudo peaks and representing asymmetries in DRT as well as precisely estimating resistances. We highlight our approach is robust to reducing and subsampling EIS frequency range, making it a promising tool for timing-resolved, localized and large scale EIS data analysis. For the Lithium ion battery data analysis, we extend the classical DRT model to incorporate the inductive effect and illustrate DRT as a guidance for equivalent circuit modeling to refine impedance reconstruction at low risks of overfitting. Furthermore, the structural-sparsity regularization could be extended for multidimensional and Bayesian EIS data analysis.</description><subject>Bayesian analysis</subject><subject>Data analysis</subject><subject>Distribution of relaxation times</subject><subject>Elastic net regularization</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Halide perovskites</subject><subject>Ill posed problems</subject><subject>Inductance</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Parameters</subject><subject>Perovskites</subject><subject>RC circuits</subject><subject>Rechargeable batteries</subject><subject>Reconstruction</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Sparsity</subject><subject>Spectrum analysis</subject><subject>Statistical model selection</subject><subject>Statistical models</subject><subject>Tuning</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkd2K1TAUhYsoeBx9BoPe2pqftmm9G8bxBwa80euQk-zO5NAmNUkPc3xf38PdVrwVAiHJ2mt_O6soXjNaMcra96cKRjBZ46o4ZX1Fm4oy-qQ4sE6KUnRN_7Q4UMpEWbdd-7x4kdKJUipbSQ_F749ggj-H8ez8PbEu5eiOS3bBkzCQCKN-1NspuwnSO7xJqNHeQCLaW-K8Xcx2JkMME9lYYjAPMDmjR-KmGez2nObtJZkwX8jZaYI2Gb022RQsjCRt1djtA7l9nMfg8gqFSNhiiXos06xjcvmCGPfLqKP7tcOtJFZnXdrozuAJyvQEGSLJi0ePl8WzQY8JXv3dr4ofn26_33wp7759_npzfVeahvNc1pSzWstB1k03DLTmwjBoqTg2XS9qbTvRm6MQQDnVQgg5dLyVHYCRnZHatOKqeLP7BpxLJeMymAf8X49jKdbULbZB0dtdNMfwc4GU1Sks0SOX4hwFUkjeo0ruKoN_liIMao5u0vGiGFVr8Oqk_gWv1uAVbRQGj5XXeyXgpGcHcQUBjMC6uHLY4P7r8QcOTcNZ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Li, Xin</creator><creator>Ahmadi, Mahshid</creator><creator>Collins, Liam</creator><creator>Kalinin, Sergei V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000153546152</orcidid><orcidid>https://orcid.org/0000000349469195</orcidid></search><sort><creationdate>20190801</creationdate><title>Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning</title><author>Li, Xin ; Ahmadi, Mahshid ; Collins, Liam ; Kalinin, Sergei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-40214a7f7458ff0423c1e603b58934ad839cb33e020a3337f82678eec78c7ac63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Data analysis</topic><topic>Distribution of relaxation times</topic><topic>Elastic net regularization</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Halide perovskites</topic><topic>Ill posed problems</topic><topic>Inductance</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Parameters</topic><topic>Perovskites</topic><topic>RC circuits</topic><topic>Rechargeable batteries</topic><topic>Reconstruction</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Sparsity</topic><topic>Spectrum analysis</topic><topic>Statistical model selection</topic><topic>Statistical models</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Ahmadi, Mahshid</creatorcontrib><creatorcontrib>Collins, Liam</creatorcontrib><creatorcontrib>Kalinin, Sergei V.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Ahmadi, Mahshid</au><au>Collins, Liam</au><au>Kalinin, Sergei V.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning</atitle><jtitle>Electrochimica acta</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>313</volume><issue>C</issue><spage>570</spage><epage>583</epage><pages>570-583</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>The distribution of relaxation times (DRT) has drawn increasing attention for interpreting electrochemical impedance spectroscopy (EIS). Deconvolution of DRT from EIS is a challenging ill-posed problem that requires regularization methods. In this work, we formulate DRT reconstruction task as a statistical model selection problem with structural-sparsity penalties. We utilize the Elastic net regularization that simultaneously benefits from Ridge and Lasso regularizations with optimal tuning parameter automatically determined by the information criteria. We benchmark our approach on four synthetic experiments (a ZARC element, ZARC mixtures, a RC circuit and a Fractal element) and two real EIS datasets of a Lithium ion battery and an organic-inorganic halide class of perovskites in oxygen environment at different gas pressures. We demonstrate the superiority of proposed model selection procedure, that is capable of eliminating pseudo peaks and representing asymmetries in DRT as well as precisely estimating resistances. We highlight our approach is robust to reducing and subsampling EIS frequency range, making it a promising tool for timing-resolved, localized and large scale EIS data analysis. For the Lithium ion battery data analysis, we extend the classical DRT model to incorporate the inductive effect and illustrate DRT as a guidance for equivalent circuit modeling to refine impedance reconstruction at low risks of overfitting. Furthermore, the structural-sparsity regularization could be extended for multidimensional and Bayesian EIS data analysis.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.05.010</doi><tpages>14</tpages><orcidid>https://orcid.org/0000000153546152</orcidid><orcidid>https://orcid.org/0000000349469195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-08, Vol.313 (C), p.570-583 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_osti_scitechconnect_1546522 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian analysis Data analysis Distribution of relaxation times Elastic net regularization Electrochemical impedance spectroscopy Equivalent circuits Frequency ranges Halide perovskites Ill posed problems Inductance INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lithium Lithium-ion batteries Parameters Perovskites RC circuits Rechargeable batteries Reconstruction Regularization Regularization methods Sparsity Spectrum analysis Statistical model selection Statistical models Tuning |
title | Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvolving%20distribution%20of%20relaxation%20times,%20resistances%20and%20inductance%20from%20electrochemical%20impedance%20spectroscopy%20via%20statistical%20model%20selection:%20Exploiting%20structural-sparsity%20regularization%20and%20data-driven%20parameter%20tuning&rft.jtitle=Electrochimica%20acta&rft.au=Li,%20Xin&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-08-01&rft.volume=313&rft.issue=C&rft.spage=570&rft.epage=583&rft.pages=570-583&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.05.010&rft_dat=%3Cproquest_osti_%3E2252273729%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252273729&rft_id=info:pmid/&rft_els_id=S0013468619309119&rfr_iscdi=true |