Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model
Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves i...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-07, Vol.100 (2), p.1, Article 020302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 100 |
creator | Li, Shaozhi Dee, Philip M. Khatami, Ehsan Johnston, Steven |
description | Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves in configuration space, respectively. Both networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by conventional MC runs on smaller lattices before being utilized for simulations on larger systems. This approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural networks are capable of learning an unspecified effective model that accurately reproduces the MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms. |
doi_str_mv | 10.1103/PhysRevB.100.020302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272728343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-dc9247270207b06d57bbf5fe61828079c96cb63957927678e449327b6c17118f3</originalsourceid><addsrcrecordid>eNo9kUFPwzAMhSsEEtPYL-ASwXnDSdqk4TYmYEhDIATnqM1SltElXZIC-_d0K3B6lv3JftZLknMME4yBXj2vduFFf95MMMAECFAgR8mApEyMhWDi-L_O4DQZhbAGAMxAcBCD5HuqlK61L6Kx76guYjRKo21b2Nhu0KOzUaNZ4WuHgtm03dw4G1Ab9nTho6mMMkWNrG79QeKX8x_hGk2bpjbqgKPoUFxpNHd1iNpYtHFLXZ8lJ1VRBz361WHydnf7OpuPF0_3D7PpYqxSlsXxUgmScsK7v3gJbJnxsqyySjOckxy4UIKpklGRcUE447lOU0EJL5nCHOO8osPkot_rQjQyKBO1WilnrVZR4ixlKRcddNlDjXfbVoco1671tvMlCemuk5ymtKNoTynvQvC6ko03m8LvJAa5j0L-RdE1QPZR0B9cKH5l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272728343</pqid></control><display><type>article</type><title>Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model</title><source>American Physical Society Journals</source><creator>Li, Shaozhi ; Dee, Philip M. ; Khatami, Ehsan ; Johnston, Steven</creator><creatorcontrib>Li, Shaozhi ; Dee, Philip M. ; Khatami, Ehsan ; Johnston, Steven</creatorcontrib><description>Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves in configuration space, respectively. Both networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by conventional MC runs on smaller lattices before being utilized for simulations on larger systems. This approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural networks are capable of learning an unspecified effective model that accurately reproduces the MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.100.020302</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Artificial neural networks ; Computer simulation ; Configurations ; Lattices ; Neural networks ; Simulation ; Two dimensional models</subject><ispartof>Physical review. B, 2019-07, Vol.100 (2), p.1, Article 020302</ispartof><rights>Copyright American Physical Society Jul 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-dc9247270207b06d57bbf5fe61828079c96cb63957927678e449327b6c17118f3</citedby><cites>FETCH-LOGICAL-c465t-dc9247270207b06d57bbf5fe61828079c96cb63957927678e449327b6c17118f3</cites><orcidid>0000-0002-5432-6802 ; 0000000254326802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1546479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shaozhi</creatorcontrib><creatorcontrib>Dee, Philip M.</creatorcontrib><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><title>Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model</title><title>Physical review. B</title><description>Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves in configuration space, respectively. Both networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by conventional MC runs on smaller lattices before being utilized for simulations on larger systems. This approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural networks are capable of learning an unspecified effective model that accurately reproduces the MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Lattices</subject><subject>Neural networks</subject><subject>Simulation</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kUFPwzAMhSsEEtPYL-ASwXnDSdqk4TYmYEhDIATnqM1SltElXZIC-_d0K3B6lv3JftZLknMME4yBXj2vduFFf95MMMAECFAgR8mApEyMhWDi-L_O4DQZhbAGAMxAcBCD5HuqlK61L6Kx76guYjRKo21b2Nhu0KOzUaNZ4WuHgtm03dw4G1Ab9nTho6mMMkWNrG79QeKX8x_hGk2bpjbqgKPoUFxpNHd1iNpYtHFLXZ8lJ1VRBz361WHydnf7OpuPF0_3D7PpYqxSlsXxUgmScsK7v3gJbJnxsqyySjOckxy4UIKpklGRcUE447lOU0EJL5nCHOO8osPkot_rQjQyKBO1WilnrVZR4ixlKRcddNlDjXfbVoco1671tvMlCemuk5ymtKNoTynvQvC6ko03m8LvJAa5j0L-RdE1QPZR0B9cKH5l</recordid><startdate>20190722</startdate><enddate>20190722</enddate><creator>Li, Shaozhi</creator><creator>Dee, Philip M.</creator><creator>Khatami, Ehsan</creator><creator>Johnston, Steven</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5432-6802</orcidid><orcidid>https://orcid.org/0000000254326802</orcidid></search><sort><creationdate>20190722</creationdate><title>Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model</title><author>Li, Shaozhi ; Dee, Philip M. ; Khatami, Ehsan ; Johnston, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-dc9247270207b06d57bbf5fe61828079c96cb63957927678e449327b6c17118f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Lattices</topic><topic>Neural networks</topic><topic>Simulation</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shaozhi</creatorcontrib><creatorcontrib>Dee, Philip M.</creatorcontrib><creatorcontrib>Khatami, Ehsan</creatorcontrib><creatorcontrib>Johnston, Steven</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shaozhi</au><au>Dee, Philip M.</au><au>Khatami, Ehsan</au><au>Johnston, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model</atitle><jtitle>Physical review. B</jtitle><date>2019-07-22</date><risdate>2019</risdate><volume>100</volume><issue>2</issue><spage>1</spage><pages>1-</pages><artnum>020302</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves in configuration space, respectively. Both networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by conventional MC runs on smaller lattices before being utilized for simulations on larger systems. This approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural networks are capable of learning an unspecified effective model that accurately reproduces the MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.100.020302</doi><orcidid>https://orcid.org/0000-0002-5432-6802</orcidid><orcidid>https://orcid.org/0000000254326802</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-07, Vol.100 (2), p.1, Article 020302 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1546479 |
source | American Physical Society Journals |
subjects | Algorithms Artificial neural networks Computer simulation Configurations Lattices Neural networks Simulation Two dimensional models |
title | Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20lattice%20quantum%20Monte%20Carlo%20simulations%20using%20artificial%20neural%20networks:%20Application%20to%20the%20Holstein%20model&rft.jtitle=Physical%20review.%20B&rft.au=Li,%20Shaozhi&rft.date=2019-07-22&rft.volume=100&rft.issue=2&rft.spage=1&rft.pages=1-&rft.artnum=020302&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.100.020302&rft_dat=%3Cproquest_osti_%3E2272728343%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272728343&rft_id=info:pmid/&rfr_iscdi=true |