Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator

Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-12, Vol.92 (22), Article 224419
Hauptverfasser: MacQuarrie, E. R., Gosavi, T. A., Bhave, S. A., Fuchs, G. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Physical review. B
container_volume 92
creator MacQuarrie, E. R.
Gosavi, T. A.
Bhave, S. A.
Fuchs, G. D.
description Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impurities and instabilities in a magnetic bias field. In this work, we use ac stress generated by a diamond mechanical resonator to engineer a dressed spin basis in which a single NV center qubit is less sensitive to its magnetic environment. For a qubit in the thermally isolated subspace of this protected basis, we prolong the dephasing time T* sub(2) from 2.7 + or - 0.1 to 15 + or - 1 mu s by dressing with a [Omega]/2[pi] = 581 + or - 2 kHz mechanical Rabi field. Furthermore, we develop a model that quantitatively predicts the relationship between [Omega] and T* sub(2) in the dressed basis. Our model suggests that a combination of magnetic field fluctuations and hyperfine coupling to nearby nuclear spins limits the protected coherence time over the range of [Omega] accessed here. We show that amplitude noise in [Omega] will dominate the dephasing for larger driving fields.
doi_str_mv 10.1103/PhysRevB.92.224419
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1546128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793277433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-3dcbe527d5346815f88798559435e8a1338b41374d452c001d1788f8b56245913</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRSMEEqXwA6wsVmxSMn409hIqXlIlEAKJneU6TmuU2MF2ivL3BAKruYszVzMny86hWAAU5Op5N8QXs79ZCLzAmFIQB9kMGCtyTNj74ZgLwfMCMBxnJzF-FAVQQfEsa1beJet630dUDU61VqsGVUb7vmus2yJfI4XimBqDKqta7yrkbAp-a1y-V1o5PSBtXDIBxc469GXTblxpjd4p99sWTPROJR9Os6NaNdGc_c159nZ3-7p6yNdP94-r63WuCYOUk0pvDMNlxQhdcmA156XgjAlKmOEKCOEbCqSkFWVYj69UUHJe8w1bYsoEkHl2MfX6mKyM2qbxGO2dMzpJYHQJmI_Q5QR1wX_2JibZ2qhN0yhnRhsSSkFwWVJCRhRPqA4-xmBq2QXbqjBIKOSPf_nvXwosJ__kG_F2eoI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793277433</pqid></control><display><type>article</type><title>Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator</title><source>American Physical Society Journals</source><creator>MacQuarrie, E. R. ; Gosavi, T. A. ; Bhave, S. A. ; Fuchs, G. D.</creator><creatorcontrib>MacQuarrie, E. R. ; Gosavi, T. A. ; Bhave, S. A. ; Fuchs, G. D.</creatorcontrib><description>Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impurities and instabilities in a magnetic bias field. In this work, we use ac stress generated by a diamond mechanical resonator to engineer a dressed spin basis in which a single NV center qubit is less sensitive to its magnetic environment. For a qubit in the thermally isolated subspace of this protected basis, we prolong the dephasing time T* sub(2) from 2.7 + or - 0.1 to 15 + or - 1 mu s by dressing with a [Omega]/2[pi] = 581 + or - 2 kHz mechanical Rabi field. Furthermore, we develop a model that quantitatively predicts the relationship between [Omega] and T* sub(2) in the dressed basis. Our model suggests that a combination of magnetic field fluctuations and hyperfine coupling to nearby nuclear spins limits the protected coherence time over the range of [Omega] accessed here. We show that amplitude noise in [Omega] will dominate the dephasing for larger driving fields.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.224419</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Background noise ; Coherence ; Diamonds ; Fluctuation ; Magnetic fields ; Mathematical models ; Qubits (quantum computing) ; Resonators</subject><ispartof>Physical review. B, 2015-12, Vol.92 (22), Article 224419</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-3dcbe527d5346815f88798559435e8a1338b41374d452c001d1788f8b56245913</citedby><cites>FETCH-LOGICAL-c351t-3dcbe527d5346815f88798559435e8a1338b41374d452c001d1788f8b56245913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1546128$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>MacQuarrie, E. R.</creatorcontrib><creatorcontrib>Gosavi, T. A.</creatorcontrib><creatorcontrib>Bhave, S. A.</creatorcontrib><creatorcontrib>Fuchs, G. D.</creatorcontrib><title>Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator</title><title>Physical review. B</title><description>Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impurities and instabilities in a magnetic bias field. In this work, we use ac stress generated by a diamond mechanical resonator to engineer a dressed spin basis in which a single NV center qubit is less sensitive to its magnetic environment. For a qubit in the thermally isolated subspace of this protected basis, we prolong the dephasing time T* sub(2) from 2.7 + or - 0.1 to 15 + or - 1 mu s by dressing with a [Omega]/2[pi] = 581 + or - 2 kHz mechanical Rabi field. Furthermore, we develop a model that quantitatively predicts the relationship between [Omega] and T* sub(2) in the dressed basis. Our model suggests that a combination of magnetic field fluctuations and hyperfine coupling to nearby nuclear spins limits the protected coherence time over the range of [Omega] accessed here. We show that amplitude noise in [Omega] will dominate the dephasing for larger driving fields.</description><subject>Background noise</subject><subject>Coherence</subject><subject>Diamonds</subject><subject>Fluctuation</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Qubits (quantum computing)</subject><subject>Resonators</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAQRSMEEqXwA6wsVmxSMn409hIqXlIlEAKJneU6TmuU2MF2ivL3BAKruYszVzMny86hWAAU5Op5N8QXs79ZCLzAmFIQB9kMGCtyTNj74ZgLwfMCMBxnJzF-FAVQQfEsa1beJet630dUDU61VqsGVUb7vmus2yJfI4XimBqDKqta7yrkbAp-a1y-V1o5PSBtXDIBxc469GXTblxpjd4p99sWTPROJR9Os6NaNdGc_c159nZ3-7p6yNdP94-r63WuCYOUk0pvDMNlxQhdcmA156XgjAlKmOEKCOEbCqSkFWVYj69UUHJe8w1bYsoEkHl2MfX6mKyM2qbxGO2dMzpJYHQJmI_Q5QR1wX_2JibZ2qhN0yhnRhsSSkFwWVJCRhRPqA4-xmBq2QXbqjBIKOSPf_nvXwosJ__kG_F2eoI</recordid><startdate>20151214</startdate><enddate>20151214</enddate><creator>MacQuarrie, E. R.</creator><creator>Gosavi, T. A.</creator><creator>Bhave, S. A.</creator><creator>Fuchs, G. D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151214</creationdate><title>Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator</title><author>MacQuarrie, E. R. ; Gosavi, T. A. ; Bhave, S. A. ; Fuchs, G. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-3dcbe527d5346815f88798559435e8a1338b41374d452c001d1788f8b56245913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Background noise</topic><topic>Coherence</topic><topic>Diamonds</topic><topic>Fluctuation</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Qubits (quantum computing)</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacQuarrie, E. R.</creatorcontrib><creatorcontrib>Gosavi, T. A.</creatorcontrib><creatorcontrib>Bhave, S. A.</creatorcontrib><creatorcontrib>Fuchs, G. D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacQuarrie, E. R.</au><au>Gosavi, T. A.</au><au>Bhave, S. A.</au><au>Fuchs, G. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator</atitle><jtitle>Physical review. B</jtitle><date>2015-12-14</date><risdate>2015</risdate><volume>92</volume><issue>22</issue><artnum>224419</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>Inhomogeneous dephasing from uncontrolled environmental noise can limit the coherence of a quantum sensor or qubit. For solid-state spin qubits such as the nitrogen-vacancy (NV) center in diamond, a dominant source of environmental noise is magnetic field fluctuations due to nearby paramagnetic impurities and instabilities in a magnetic bias field. In this work, we use ac stress generated by a diamond mechanical resonator to engineer a dressed spin basis in which a single NV center qubit is less sensitive to its magnetic environment. For a qubit in the thermally isolated subspace of this protected basis, we prolong the dephasing time T* sub(2) from 2.7 + or - 0.1 to 15 + or - 1 mu s by dressing with a [Omega]/2[pi] = 581 + or - 2 kHz mechanical Rabi field. Furthermore, we develop a model that quantitatively predicts the relationship between [Omega] and T* sub(2) in the dressed basis. Our model suggests that a combination of magnetic field fluctuations and hyperfine coupling to nearby nuclear spins limits the protected coherence time over the range of [Omega] accessed here. We show that amplitude noise in [Omega] will dominate the dephasing for larger driving fields.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.224419</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-12, Vol.92 (22), Article 224419
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_osti_scitechconnect_1546128
source American Physical Society Journals
subjects Background noise
Coherence
Diamonds
Fluctuation
Magnetic fields
Mathematical models
Qubits (quantum computing)
Resonators
title Continuous dynamical decoupling of a single diamond nitrogen-vacancy center spin with a mechanical resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20dynamical%20decoupling%20of%20a%20single%20diamond%20nitrogen-vacancy%20center%20spin%20with%20a%20mechanical%20resonator&rft.jtitle=Physical%20review.%20B&rft.au=MacQuarrie,%20E.%20R.&rft.date=2015-12-14&rft.volume=92&rft.issue=22&rft.artnum=224419&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.224419&rft_dat=%3Cproquest_osti_%3E1793277433%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793277433&rft_id=info:pmid/&rfr_iscdi=true