Hydrodynamic and magnetohydrodynamic simulations of wire turbulence

In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:High energy density physics 2019-07, Vol.33 (C)
Hauptverfasser: Fogerty, Erica Lauren, Liu, Baowei, Frank, Adam, Carroll-Nellenback, Jonathan, Lebedev, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title High energy density physics
container_volume 33
creator Fogerty, Erica Lauren
Liu, Baowei
Frank, Adam
Carroll-Nellenback, Jonathan
Lebedev, Sergey
description In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1544692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544692</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15446923</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEMCtafdwjuhaZNtc5F6QO4l5jc2khyA7kJ0rd3cXB0OvBxVqwQ7VmWohPdhm2JXlUlm7oWBeuHxcRgFlTeaq7QcK-eCCnMv07WZ6eSDUg8TPxtI_CU4yM7QA17tp6UIzh8u2PH2_XeD2WgZEfSNoGedUAEnUbRSnm61M1f0we_5TrS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><source>Elsevier ScienceDirect Journals</source><creator>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey</creator><creatorcontrib>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</description><identifier>ISSN: 1574-1818</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>(Magnetohydrodynamics) MHD ; ASTRONOMY AND ASTROPHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Hydrodynamics ; Turbulence</subject><ispartof>High energy density physics, 2019-07, Vol.33 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1544692$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fogerty, Erica Lauren</creatorcontrib><creatorcontrib>Liu, Baowei</creatorcontrib><creatorcontrib>Frank, Adam</creatorcontrib><creatorcontrib>Carroll-Nellenback, Jonathan</creatorcontrib><creatorcontrib>Lebedev, Sergey</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><title>High energy density physics</title><description>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</description><subject>(Magnetohydrodynamics) MHD</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Hydrodynamics</subject><subject>Turbulence</subject><issn>1574-1818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOEMCtafdwjuhaZNtc5F6QO4l5jc2khyA7kJ0rd3cXB0OvBxVqwQ7VmWohPdhm2JXlUlm7oWBeuHxcRgFlTeaq7QcK-eCCnMv07WZ6eSDUg8TPxtI_CU4yM7QA17tp6UIzh8u2PH2_XeD2WgZEfSNoGedUAEnUbRSnm61M1f0we_5TrS</recordid><startdate>20190712</startdate><enddate>20190712</enddate><creator>Fogerty, Erica Lauren</creator><creator>Liu, Baowei</creator><creator>Frank, Adam</creator><creator>Carroll-Nellenback, Jonathan</creator><creator>Lebedev, Sergey</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190712</creationdate><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><author>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15446923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>(Magnetohydrodynamics) MHD</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Hydrodynamics</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogerty, Erica Lauren</creatorcontrib><creatorcontrib>Liu, Baowei</creatorcontrib><creatorcontrib>Frank, Adam</creatorcontrib><creatorcontrib>Carroll-Nellenback, Jonathan</creatorcontrib><creatorcontrib>Lebedev, Sergey</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>High energy density physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogerty, Erica Lauren</au><au>Liu, Baowei</au><au>Frank, Adam</au><au>Carroll-Nellenback, Jonathan</au><au>Lebedev, Sergey</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</atitle><jtitle>High energy density physics</jtitle><date>2019-07-12</date><risdate>2019</risdate><volume>33</volume><issue>C</issue><issn>1574-1818</issn><abstract>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-1818
ispartof High energy density physics, 2019-07, Vol.33 (C)
issn 1574-1818
language eng
recordid cdi_osti_scitechconnect_1544692
source Elsevier ScienceDirect Journals
subjects (Magnetohydrodynamics) MHD
ASTRONOMY AND ASTROPHYSICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Hydrodynamics
Turbulence
title Hydrodynamic and magnetohydrodynamic simulations of wire turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20and%20magnetohydrodynamic%20simulations%20of%20wire%20turbulence&rft.jtitle=High%20energy%20density%20physics&rft.au=Fogerty,%20Erica%20Lauren&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-07-12&rft.volume=33&rft.issue=C&rft.issn=1574-1818&rft_id=info:doi/&rft_dat=%3Costi%3E1544692%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true