Hydrodynamic and magnetohydrodynamic simulations of wire turbulence
In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures...
Gespeichert in:
Veröffentlicht in: | High energy density physics 2019-07, Vol.33 (C) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | High energy density physics |
container_volume | 33 |
creator | Fogerty, Erica Lauren Liu, Baowei Frank, Adam Carroll-Nellenback, Jonathan Lebedev, Sergey |
description | In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1544692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544692</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15446923</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEMCtafdwjuhaZNtc5F6QO4l5jc2khyA7kJ0rd3cXB0OvBxVqwQ7VmWohPdhm2JXlUlm7oWBeuHxcRgFlTeaq7QcK-eCCnMv07WZ6eSDUg8TPxtI_CU4yM7QA17tp6UIzh8u2PH2_XeD2WgZEfSNoGedUAEnUbRSnm61M1f0we_5TrS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><source>Elsevier ScienceDirect Journals</source><creator>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey</creator><creatorcontrib>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</description><identifier>ISSN: 1574-1818</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>(Magnetohydrodynamics) MHD ; ASTRONOMY AND ASTROPHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Hydrodynamics ; Turbulence</subject><ispartof>High energy density physics, 2019-07, Vol.33 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1544692$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fogerty, Erica Lauren</creatorcontrib><creatorcontrib>Liu, Baowei</creatorcontrib><creatorcontrib>Frank, Adam</creatorcontrib><creatorcontrib>Carroll-Nellenback, Jonathan</creatorcontrib><creatorcontrib>Lebedev, Sergey</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><title>High energy density physics</title><description>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</description><subject>(Magnetohydrodynamics) MHD</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Hydrodynamics</subject><subject>Turbulence</subject><issn>1574-1818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNyr0KwjAUQOEMCtafdwjuhaZNtc5F6QO4l5jc2khyA7kJ0rd3cXB0OvBxVqwQ7VmWohPdhm2JXlUlm7oWBeuHxcRgFlTeaq7QcK-eCCnMv07WZ6eSDUg8TPxtI_CU4yM7QA17tp6UIzh8u2PH2_XeD2WgZEfSNoGedUAEnUbRSnm61M1f0we_5TrS</recordid><startdate>20190712</startdate><enddate>20190712</enddate><creator>Fogerty, Erica Lauren</creator><creator>Liu, Baowei</creator><creator>Frank, Adam</creator><creator>Carroll-Nellenback, Jonathan</creator><creator>Lebedev, Sergey</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190712</creationdate><title>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</title><author>Fogerty, Erica Lauren ; Liu, Baowei ; Frank, Adam ; Carroll-Nellenback, Jonathan ; Lebedev, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15446923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>(Magnetohydrodynamics) MHD</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Hydrodynamics</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fogerty, Erica Lauren</creatorcontrib><creatorcontrib>Liu, Baowei</creatorcontrib><creatorcontrib>Frank, Adam</creatorcontrib><creatorcontrib>Carroll-Nellenback, Jonathan</creatorcontrib><creatorcontrib>Lebedev, Sergey</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>High energy density physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fogerty, Erica Lauren</au><au>Liu, Baowei</au><au>Frank, Adam</au><au>Carroll-Nellenback, Jonathan</au><au>Lebedev, Sergey</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic and magnetohydrodynamic simulations of wire turbulence</atitle><jtitle>High energy density physics</jtitle><date>2019-07-12</date><risdate>2019</risdate><volume>33</volume><issue>C</issue><issn>1574-1818</issn><abstract>In this paper, we report on simulations of laboratory experiments in which magnetized supersonic flows are driven through a wire mesh. The goal of the study was to investigate the ability of such a configuration to generate supersonic, MHD turbulence. We first report on the morphological structures that develop in both magnetized and non-magnetized cases. We then analyze the flow using a variety of statistical measures, including power spectra and probability distribution functions of the density. Using these results we estimate the sonic mach number in the flows downstream of the wire mesh. Finally, we find the initially hypersonic (Ms = 20) planar shock through the wire mesh does lead to downstream turbulent conditions. However, in both magnetized and non-magnetized cases, the resultant turbulence was marginally supersonic to transonic (Ms~1), and highly anisotropic in structure.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1818 |
ispartof | High energy density physics, 2019-07, Vol.33 (C) |
issn | 1574-1818 |
language | eng |
recordid | cdi_osti_scitechconnect_1544692 |
source | Elsevier ScienceDirect Journals |
subjects | (Magnetohydrodynamics) MHD ASTRONOMY AND ASTROPHYSICS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Hydrodynamics Turbulence |
title | Hydrodynamic and magnetohydrodynamic simulations of wire turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20and%20magnetohydrodynamic%20simulations%20of%20wire%20turbulence&rft.jtitle=High%20energy%20density%20physics&rft.au=Fogerty,%20Erica%20Lauren&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-07-12&rft.volume=33&rft.issue=C&rft.issn=1574-1818&rft_id=info:doi/&rft_dat=%3Costi%3E1544692%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |