Steady flame streets in a non-premixed microburner

Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combusti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2019-08, Vol.206 (C), p.349-362
Hauptverfasser: Mackay, Kyle K., Johnson, Harley T., Freund, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue C
container_start_page 349
container_title Combustion and flame
container_volume 206
creator Mackay, Kyle K.
Johnson, Harley T.
Freund, Jonathan B.
description Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.
doi_str_mv 10.1016/j.combustflame.2019.05.018
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1544439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302317</els_id><sourcerecordid>2278882645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH6IyJzw7tuOwofIpVWIAZst1XoSjJi62i-i_J6EMjExvuffqvEPIgkJBgcqrrrC-X-9iajemx4IBrQsQBVB1RGZUCJmzmtFjMgOgkDOq4JScxdgBQMXLckbYS0LT7LOffhZTQEwxc0NmssEP-TZg776wyXpng1_vwoDhnJy0ZhPx4vfOydv93evyMV89Pzwtb1a55VKlXFYC27KGimKJlVEts6rlEimCRNFwTivgaNd11SglkBpVGmhaxpRUpgFRzsnisOtjcjpal9C-Wz8MaJOmgnNe1mPo8hDaBv-xw5h050fKkUszVimlmOTT1PUhNT4RY8BWb4PrTdhrCnoSqTv9V6SeRGoQehQ5lm8PZRyf_XQYJhYcLDYuTCiNd_-Z-QYjB4G0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278882645</pqid></control><display><type>article</type><title>Steady flame streets in a non-premixed microburner</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</creator><creatorcontrib>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</creatorcontrib><description>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Combustion ; Computer simulation ; Flame quenching ; Flame streets ; Flame structure ; Flow velocity ; Heat loss ; Matching ; Methane ; Microcombustion ; Organic chemistry ; Quenching ; Streets ; Structural stability</subject><ispartof>Combustion and flame, 2019-08, Vol.206 (C), p.349-362</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</citedby><cites>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</cites><orcidid>0000-0002-7073-1365 ; 0000000270731365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2019.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1544439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackay, Kyle K.</creatorcontrib><creatorcontrib>Johnson, Harley T.</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><title>Steady flame streets in a non-premixed microburner</title><title>Combustion and flame</title><description>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</description><subject>Combustion</subject><subject>Computer simulation</subject><subject>Flame quenching</subject><subject>Flame streets</subject><subject>Flame structure</subject><subject>Flow velocity</subject><subject>Heat loss</subject><subject>Matching</subject><subject>Methane</subject><subject>Microcombustion</subject><subject>Organic chemistry</subject><subject>Quenching</subject><subject>Streets</subject><subject>Structural stability</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH6IyJzw7tuOwofIpVWIAZst1XoSjJi62i-i_J6EMjExvuffqvEPIgkJBgcqrrrC-X-9iajemx4IBrQsQBVB1RGZUCJmzmtFjMgOgkDOq4JScxdgBQMXLckbYS0LT7LOffhZTQEwxc0NmssEP-TZg776wyXpng1_vwoDhnJy0ZhPx4vfOydv93evyMV89Pzwtb1a55VKlXFYC27KGimKJlVEts6rlEimCRNFwTivgaNd11SglkBpVGmhaxpRUpgFRzsnisOtjcjpal9C-Wz8MaJOmgnNe1mPo8hDaBv-xw5h050fKkUszVimlmOTT1PUhNT4RY8BWb4PrTdhrCnoSqTv9V6SeRGoQehQ5lm8PZRyf_XQYJhYcLDYuTCiNd_-Z-QYjB4G0</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Mackay, Kyle K.</creator><creator>Johnson, Harley T.</creator><creator>Freund, Jonathan B.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7073-1365</orcidid><orcidid>https://orcid.org/0000000270731365</orcidid></search><sort><creationdate>20190801</creationdate><title>Steady flame streets in a non-premixed microburner</title><author>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combustion</topic><topic>Computer simulation</topic><topic>Flame quenching</topic><topic>Flame streets</topic><topic>Flame structure</topic><topic>Flow velocity</topic><topic>Heat loss</topic><topic>Matching</topic><topic>Methane</topic><topic>Microcombustion</topic><topic>Organic chemistry</topic><topic>Quenching</topic><topic>Streets</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackay, Kyle K.</creatorcontrib><creatorcontrib>Johnson, Harley T.</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackay, Kyle K.</au><au>Johnson, Harley T.</au><au>Freund, Jonathan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady flame streets in a non-premixed microburner</atitle><jtitle>Combustion and flame</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>206</volume><issue>C</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7073-1365</orcidid><orcidid>https://orcid.org/0000000270731365</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2019-08, Vol.206 (C), p.349-362
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_1544439
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Combustion
Computer simulation
Flame quenching
Flame streets
Flame structure
Flow velocity
Heat loss
Matching
Methane
Microcombustion
Organic chemistry
Quenching
Streets
Structural stability
title Steady flame streets in a non-premixed microburner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20flame%20streets%20in%20a%20non-premixed%20microburner&rft.jtitle=Combustion%20and%20flame&rft.au=Mackay,%20Kyle%20K.&rft.date=2019-08-01&rft.volume=206&rft.issue=C&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.018&rft_dat=%3Cproquest_osti_%3E2278882645%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278882645&rft_id=info:pmid/&rft_els_id=S0010218019302317&rfr_iscdi=true