Steady flame streets in a non-premixed microburner
Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combusti...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2019-08, Vol.206 (C), p.349-362 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | C |
container_start_page | 349 |
container_title | Combustion and flame |
container_volume | 206 |
creator | Mackay, Kyle K. Johnson, Harley T. Freund, Jonathan B. |
description | Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner. |
doi_str_mv | 10.1016/j.combustflame.2019.05.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1544439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019302317</els_id><sourcerecordid>2278882645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwH6IyJzw7tuOwofIpVWIAZst1XoSjJi62i-i_J6EMjExvuffqvEPIgkJBgcqrrrC-X-9iajemx4IBrQsQBVB1RGZUCJmzmtFjMgOgkDOq4JScxdgBQMXLckbYS0LT7LOffhZTQEwxc0NmssEP-TZg776wyXpng1_vwoDhnJy0ZhPx4vfOydv93evyMV89Pzwtb1a55VKlXFYC27KGimKJlVEts6rlEimCRNFwTivgaNd11SglkBpVGmhaxpRUpgFRzsnisOtjcjpal9C-Wz8MaJOmgnNe1mPo8hDaBv-xw5h050fKkUszVimlmOTT1PUhNT4RY8BWb4PrTdhrCnoSqTv9V6SeRGoQehQ5lm8PZRyf_XQYJhYcLDYuTCiNd_-Z-QYjB4G0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278882645</pqid></control><display><type>article</type><title>Steady flame streets in a non-premixed microburner</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</creator><creatorcontrib>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</creatorcontrib><description>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.05.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Combustion ; Computer simulation ; Flame quenching ; Flame streets ; Flame structure ; Flow velocity ; Heat loss ; Matching ; Methane ; Microcombustion ; Organic chemistry ; Quenching ; Streets ; Structural stability</subject><ispartof>Combustion and flame, 2019-08, Vol.206 (C), p.349-362</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Aug 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</citedby><cites>FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</cites><orcidid>0000-0002-7073-1365 ; 0000000270731365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2019.05.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1544439$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackay, Kyle K.</creatorcontrib><creatorcontrib>Johnson, Harley T.</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><title>Steady flame streets in a non-premixed microburner</title><title>Combustion and flame</title><description>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</description><subject>Combustion</subject><subject>Computer simulation</subject><subject>Flame quenching</subject><subject>Flame streets</subject><subject>Flame structure</subject><subject>Flow velocity</subject><subject>Heat loss</subject><subject>Matching</subject><subject>Methane</subject><subject>Microcombustion</subject><subject>Organic chemistry</subject><subject>Quenching</subject><subject>Streets</subject><subject>Structural stability</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwH6IyJzw7tuOwofIpVWIAZst1XoSjJi62i-i_J6EMjExvuffqvEPIgkJBgcqrrrC-X-9iajemx4IBrQsQBVB1RGZUCJmzmtFjMgOgkDOq4JScxdgBQMXLckbYS0LT7LOffhZTQEwxc0NmssEP-TZg776wyXpng1_vwoDhnJy0ZhPx4vfOydv93evyMV89Pzwtb1a55VKlXFYC27KGimKJlVEts6rlEimCRNFwTivgaNd11SglkBpVGmhaxpRUpgFRzsnisOtjcjpal9C-Wz8MaJOmgnNe1mPo8hDaBv-xw5h050fKkUszVimlmOTT1PUhNT4RY8BWb4PrTdhrCnoSqTv9V6SeRGoQehQ5lm8PZRyf_XQYJhYcLDYuTCiNd_-Z-QYjB4G0</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Mackay, Kyle K.</creator><creator>Johnson, Harley T.</creator><creator>Freund, Jonathan B.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7073-1365</orcidid><orcidid>https://orcid.org/0000000270731365</orcidid></search><sort><creationdate>20190801</creationdate><title>Steady flame streets in a non-premixed microburner</title><author>Mackay, Kyle K. ; Johnson, Harley T. ; Freund, Jonathan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-675ef39071e3e7a8f2c8f46e1e06e5d441704ecb97d885e1a83a0df22868ad053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combustion</topic><topic>Computer simulation</topic><topic>Flame quenching</topic><topic>Flame streets</topic><topic>Flame structure</topic><topic>Flow velocity</topic><topic>Heat loss</topic><topic>Matching</topic><topic>Methane</topic><topic>Microcombustion</topic><topic>Organic chemistry</topic><topic>Quenching</topic><topic>Streets</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackay, Kyle K.</creatorcontrib><creatorcontrib>Johnson, Harley T.</creatorcontrib><creatorcontrib>Freund, Jonathan B.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackay, Kyle K.</au><au>Johnson, Harley T.</au><au>Freund, Jonathan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady flame streets in a non-premixed microburner</atitle><jtitle>Combustion and flame</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>206</volume><issue>C</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Three-dimensional simulations of a non-premixed microburner (channel height Lz=0.75 mm) are used to study flame structure and stability, for both H2–O2 and CH4–O2 mixtures, matching conditions of previously reported experiments. Thermal quenching and slow diffusive mixing lead to incomplete combustion and, for some flow rates, steady flame streets form in the channel for CH4–O2, matching experimental observations. Still smaller-scale burners, with channel heights Lz=0.375 mm and Lz=0.25 mm, are also simulated, and flame streets are seen even for H2–O2 cases due to the strong thermal quenching. A wall-chemistry model is used to assess the importance of wall quenching of H and O radicals. Wall recombination kinetics weaken the flames, reduce temperature by over 100 K, significantly reduce the length of the flame diffusion tails, and reduce overall combustion completeness. The basic mechanisms observed to be important in the microburner channel are included in an analogous one-dimensional diffusion-flame model, which includes a heat-loss factor motivated by the full burner. For similar conditions to the microburner and high heat loss, the solution oscillates sufficiently strongly to extinguish the flame, as observed in some microburner cases. For more modest thermal quenching, the oscillations persist and are analogous to the stable flame streets seen in the microburner.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.05.018</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7073-1365</orcidid><orcidid>https://orcid.org/0000000270731365</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2019-08, Vol.206 (C), p.349-362 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_1544439 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Combustion Computer simulation Flame quenching Flame streets Flame structure Flow velocity Heat loss Matching Methane Microcombustion Organic chemistry Quenching Streets Structural stability |
title | Steady flame streets in a non-premixed microburner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20flame%20streets%20in%20a%20non-premixed%20microburner&rft.jtitle=Combustion%20and%20flame&rft.au=Mackay,%20Kyle%20K.&rft.date=2019-08-01&rft.volume=206&rft.issue=C&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.05.018&rft_dat=%3Cproquest_osti_%3E2278882645%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278882645&rft_id=info:pmid/&rft_els_id=S0010218019302317&rfr_iscdi=true |